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1 Introduction

Missing data is a ubiquitous problem in social science data. Respondents do not
answer every question, countries do not collect statistics every year, archives are
incomplete, subjects drop out of panels. Most statistical analysis methods, however,
assume the absence of missing data, and are only able to include observations for
which every variable is measured. Amelia II allows users to impute (“fill in”or rectan-
gularize) incomplete data sets so that analyses which require complete observations
can appropriately use all the information present in a dataset with missingness, and
avoid the biases, inefficiencies, and incorrect uncertainty estimates that can result
from dropping all partially observed observations from the analysis.

Amelia II performs multiple imputation, a general-purpose approach to data with
missing values. Multiple imputation has been shown to reduce bias and increase ef-
ficiency compared to listwise deletion. Furthermore, ad-hoc methods of imputation,
such as mean imputation, can lead to serious biases in variances and covariances.
Unfortunately, creating multiple imputations can be a burdensome process due to
the technical nature of algorithms involved. Amelia provides users with a simple
way to create and implement an imputation model, generate imputed datasets, and
check its fit using diagnostics.

The Amelia II program goes several significant steps beyond the capabilities of
the first version of Amelia (Honaker, Joseph, King, Scheve and Singh., 1998-2002).
For one, the bootstrap-based EMB algorithm included in Amelia II can impute
many more variables, with many more observations, in much less time. The great
simplicity and power of the EMB algorithm made it possible to write Amelia II so
that it virtually never crashes — which to our knowledge makes it unique among
all existing multiple imputation software — and is much faster than the alternatives
too. Amelia II also has features to make valid and much more accurate imputations
for cross-sectional, time-series, and time-series-cross-section data, and allows the
incorporation of observation and data-matrix-cell level prior information. In addition
to all of this, Amelia II provides many diagnostic functions that help users check the
validity of their imputation model. This software implements the ideas developed in
Honaker and King (2010).

2 What Amelia Does

Multiple imputation involves imputing m values for each missing cell in your data
matrix and creating m “completed” data sets. Across these completed data sets, the
observed values are the same, but the missing values are filled in with a distribution of
imputations that reflect the uncertainty about the missing data. After imputation
with Amelia II’s EMB algorithm, you can apply whatever statistical method you
would have used if there had been no missing values to each of the m data sets,
and use a simple procedure, described below, to combine the results1. Under normal
circumstances, you only need to impute once and can then analyze the m imputed

1You can combine the results automatically by doing your data analyses within Zelig for R, or
within Clarify for Stata; see http://gking.harvard.edu/stats.shtml.

3

http://gking.harvard.edu/stats.shtml


data sets as many times and for as many purposes as you wish. The advantage of
Amelia II is that it combines the comparative speed and ease-of-use of our algorithm
with the power of multiple imputation, to let you focus on your substantive research
questions rather than spending time developing complex application-specific models
for nonresponse in each new data set. Unless the rate of missingness is very high,
m = 5 (the program default) is probably adequate.

2.1 Assumptions

The imputation model in Amelia II assumes that the complete data (that is, both
observed and unobserved) are multivariate normal. If we denote the (n× k) dataset
as D (with observed part Dobs and unobserved part Dmis), then this assumption is

D ∼ Nk(µ, Σ), (1)

which states that D has a multivariate normal distribution with mean vector µ and
covariance matrix Σ. The multivariate normal distribution is often a crude approx-
imation to the true distribution of the data, yet there is evidence that this model
works as well as other, more complicated models even in the face of categorical or
mixed data (see Schafer, 1997; Schafer and Olsen, 1998). Furthermore, transforma-
tions of many types of variables can often make this normality assumption more
plausible (see 4.3 for more information on how to implement this in Amelia).

The essential problem of imputation is that we only observe Dobs, not the entirety
of D. In order to gain traction, we need to make the usual assumption in multiple
imputation that the data are missing at random (MAR). This assumption means
that the pattern of missingness only depends on the observed data Dobs, not the
unobserved data Dmis. Let M to be the missingness matrix, with cells mij = 1 if
dij ∈ Dmis and mij = 0 otherwise. Put simply, M is a matrix that indicates whether
or not a cell is missing in the data. With this, we can define the MAR assumption
as

p(M |D) = p(M |Dobs). (2)

Note that MAR includes the case when missing values are created randomly by, say,
coin flips, but it also includes many more sophisticated missingness models. When
missingness is not dependent on the data at all, we say that the data are missing
completely at random (MCAR). Amelia requires both the multivariate normality
and the MAR assumption (or the simpler special case of MCAR). Note that the
MAR assumption can be made more plausible by including additional variables in
the dataset D in the imputation dataset than just those eventually envisioned to be
used in the analysis model.

2.2 Algorithm

In multiple imputation, we are concerned with the complete-data parameters, θ =
(µ, Σ). When writing down a model of the data, it is clear that our observed data is
actually Dobs and M , the missingness matrix. Thus, the likelihood of our observed
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data is p(Dobs, M |θ). Using the MAR assumption2, we can break this up,

p(Dobs, M |θ) = p(M |Dobs)p(Dobs|θ). (3)

As we only care about inference on the complete data parameters, we can write the
likelihood as

L(θ|Dobs) ∝ p(Dobs|θ), (4)

which we can rewrite using the law of iterated expectations as

p(Dobs|θ) =

∫
p(D|θ)dDmis. (5)

With this likelihood and a flat prior on θ, we can see that the posterior is

p(θ|Dobs) ∝ p(Dobs|θ) =

∫
p(D|θ)dDmis. (6)

The main computational difficulty in the analysis of incomplete data is taking draws
from this posterior. The EM algorithm (Dempster, Laird and Rubin, 1977) is a
simple computational approach to finding the mode of the posterior. Our EMB al-
gorithm combines the classic EM algorithm with a bootstrap approach to take draws
from this posterior. For each draw, we bootstrap the data to simulate estimation
uncertainty and then run the EM algorithm to find the mode of the posterior for the
bootstrapped data, which gives us fundamental uncertainty too (see Honaker and
King (2010) for details of the EMB algorithm).

Once we have draws of the posterior of the complete-data parameters, we make
imputations by drawing values of Dmis from its distribution conditional on Dobs and
the draws of θ, which is a linear regression with parameters that can be calculated
directly from θ.

2.3 Analysis

In order to combine the results across m data sets, first decide on the quantity
of interest to compute, such as a univariate mean, regression coefficient, predicted
probability, or first difference. Then, the easiest way is to draw 1/m simulations of q
from each of the m data sets, combine them into one set of m simulations, and then
to use the standard simulation-based methods of interpretation common for single
data sets (King, Tomz and Wittenberg, 2000).

Alternatively, you can combine directly and use as the multiple imputation esti-
mate of this parameter, q̄, the average of the m separate estimates, qj (j = 1, . . . ,m):

q̄ =
1

m

m∑
j=1

qj. (7)

2There is an additional assumption hidden here that M does not depend on the complete-data
parameters.
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Figure 1: A schematic of our approach to multiple imputation with the EMB algo-
rithm.

The variance of the point estimate is the average of the estimated variances from
within each completed data set, plus the sample variance in the point estimates
across the data sets (multiplied by a factor that corrects for the bias because m <
∞). Let SE(qj)

2 denote the estimated variance (squared standard error) of qj from
the data set j, and S2

q = Σm
j=1(qj − q̄)2/(m − 1) be the sample variance across the

m point estimates. The standard error of the multiple imputation point estimate is
the square root of

SE(q)2 =
1

m

m∑
j=1

SE(qj)
2 + S2

q (1 + 1/m). (8)

3 Versions of Amelia

Two versions of Amelia II are available, each with its own advantages and drawbacks,
but both of which use the same underlying code and algorithms. First, Amelia II
exists as a package for the R statistical software package. Users can utilize their
knowledge of the R language to run Amelia II at the command line or to create scripts
that will run Amelia II and preserve the commands for future use. Alternatively, you
may prefer AmeliaView, where an interactive Graphical User Interface (GUI) allows
you to set options and run Amelia without any knowledge of the R programming
language.

Both versions of Amelia II are available on the Windows, Mac OS X, and Linux
platforms and Amelia II for R runs in any environment that R can. All versions of
Amelia require the R software, which is freely available at http://www.r-project.
org/.

Before installing Amelia II, you must have installed R version 2.1.0 or higher,
which is freely available at http://www.r-project.org/.
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3.1 Installation and Updates from R

To install the Amelia package on any platform, simply type the following at the R
command prompt,

> install.packages("Amelia")

and R will automatically install the package to your system from CRAN. If you wish
to use the most current beta version of Amelia feel free to install the test version,

> install.packages("Amelia", repos = "http://gking.harvard.edu")

In order to keep your copy of Amelia completely up to date, you should use the
command

> update.packages()

3.2 Installation in Windows of AmeliaView as a Standalone
Program

To install a standalone version of AmeliaView in the Windows environment, simply
download the installer setup.exe from http://gking.harvard.edu/amelia/ and
run it. The installer will ask you to choose a location to install Amelia II. If you
have installed R with the default options, Amelia II will automatically find the
location of R. If the installer cannot find R, it will ask you to locate the directory
of the most current version of R. Make sure you choose the directory name that
includes the version number of R (e.g. C:/Program Files/R/R-2.9.0) and contains a
subdirectory named bin. The installer will also put shortcuts on your Desktop and
Start Menu.

Even users familiar with the R language may find it useful to utilize AmeliaView
to set options on variables, change arguments, or run diagnostics. From the com-
mand line, AmeliaView can be brought up with the call:

> library(Amelia)

> AmeliaView()

3.3 Linux (local installation)

Installing Amelia on a Linux system is slightly more complicated due to user per-
missions. If you are running R with root access, you can simply run the above
installation procedure. If you do not have root access, you can install Amelia to a
local library. First, create a local directory to house the packages,

w4:mblackwell [~]: mkdir ~/myrlibrary

and then, in an R session, install the package directing R to this location:

> install.packages("Amelia", lib = "~/myrlibrary")
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Once this is complete you need to edit or create your R profile. Locate or create
~/.Rprofile in your home directory and add this line:

.libPath("~/myrlibrary")

This will add your local library to the list of library paths that R searches in when
you load libraries.

Linux users can use AmeliaView in the same way as Windows users of Amelia
for R. From the command line, AmeliaView can be brought up with the call:

> AmeliaView()

4 A User’s Guide

4.1 Data and Initial Results

We now demonstrate how to use Amelia using data from Milner and Kubota (2005)
which studies the effect of democracy on trade policy. For the purposes of this user’s
guide, we will use a subset restricted to nine developing countries in Asia from
1980 to 19993. This dataset includes 9 variables: year (year), country (country),
average tariff rates (tariff), Polity IV score4 (polity), total population (pop), gross
domestic product per capita (gdp.pc), gross international reserves (intresmi), a
dummy variable signifying whether the country had signed an IMF agreement in
that year (signed), a measure of financial openness (fivop), and a measure of US
hegemony5 (usheg). These variables correspond to the variables used in the analysis
model of Milner and Kubota (2005) in table 2.

We first load the Amelia and the data:

> require(Amelia)

> data(freetrade)

We can check the summary statistics of the data to see that there is missingness
on many of the variables:

> summary(freetrade)

year country tariff polity

Min. :1981 Length:171 Min. : 7.1 Min. :-8.0

1st Qu.:1985 Class :character 1st Qu.: 16.3 1st Qu.:-2.0

Median :1990 Mode :character Median : 25.2 Median : 5.0

Mean :1990 Mean : 31.6 Mean : 2.9

3rd Qu.:1995 3rd Qu.: 40.8 3rd Qu.: 8.0

3We have artificially added some missingness to these data for presentational purposes. You
can access the original data at http://www.princeton.edu/~hmilner/Research.htm

4The Polity score is a number between -10 and 10 indicating how democratic a country is. A
fully autocratic country would be a -10 while a fully democratic country would be 1 10.

5This measure of US hegemony is the US imports and exports as a percent of the world total
imports and exports.
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Max. :1999 Max. :100.0 Max. : 9.0

NA's :58 NA's :2

pop gdp.pc intresmi signed

Min. :1.41e+07 Min. : 150 Min. :0.904 Min. :0.000

1st Qu.:1.97e+07 1st Qu.: 420 1st Qu.:2.223 1st Qu.:0.000

Median :5.28e+07 Median : 814 Median :3.182 Median :0.000

Mean :1.50e+08 Mean : 1867 Mean :3.375 Mean :0.155

3rd Qu.:1.21e+08 3rd Qu.: 2463 3rd Qu.:4.406 3rd Qu.:0.000

Max. :9.98e+08 Max. :12086 Max. :7.935 Max. :1.000

NA's :13 NA's :3

fiveop usheg

Min. :12.3 Min. :0.256

1st Qu.:12.5 1st Qu.:0.262

Median :12.6 Median :0.276

Mean :12.7 Mean :0.276

3rd Qu.:13.2 3rd Qu.:0.289

Max. :13.2 Max. :0.308

NA's :18

In the presence of missing data, most statistical packages use listwise deletion,
which removes any row that contains a missing value from the analysis. Using the
base model of Milner and Kubota (2005) table 2, we run a simple linear model in R,
which uses listwise deletion:

> summary(lm(tariff ~ polity + pop + gdp.pc + year + country,

+ data = freetrade))

Call:

lm(formula = tariff ~ polity + pop + gdp.pc + year + country,

data = freetrade)

Residuals:

Min 1Q Median 3Q Max

-30.764 -3.259 0.087 2.598 18.310

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.97e+03 4.02e+02 4.91 3.6e-06

polity -1.37e-01 1.82e-01 -0.75 0.45

pop -2.02e-07 2.54e-08 -7.95 3.2e-12

gdp.pc 6.10e-04 7.44e-04 0.82 0.41

year -8.71e-01 2.08e-01 -4.18 6.4e-05

countryIndonesia -1.82e+02 1.86e+01 -9.82 3.0e-16

countryKorea -2.20e+02 2.08e+01 -10.61 < 2e-16

countryMalaysia -2.25e+02 2.17e+01 -10.34 < 2e-16

countryNepal -2.16e+02 2.25e+01 -9.63 7.7e-16

countryPakistan -1.55e+02 1.98e+01 -7.84 5.6e-12
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countryPhilippines -2.04e+02 2.09e+01 -9.77 3.7e-16

countrySriLanka -2.09e+02 2.21e+01 -9.46 1.8e-15

countryThailand -1.96e+02 2.10e+01 -9.36 3.0e-15

Residual standard error: 6.22 on 98 degrees of freedom

(60 observations deleted due to missingness)

Multiple R-squared: 0.925, Adjusted R-squared: 0.915

F-statistic: 100 on 12 and 98 DF, p-value: <2e-16

Note that 60 of the 171 original observations are deleted due to missingness.
These observations, however, are partially observed, and contain valuable informa-
tion about the relationships between those variables which are present in the partially
completed observations. Multiple imputation will help us retrieve that information
and make better, more efficient, inferences.

4.2 Multiple Imputation

When performing multiple imputation, the first step is to identify the variables to
include in the imputation model. It is crucial to include at least as much information
as will be used in the analysis model. That is, any variable that will be in the analysis
model should also be in the imputation model. This includes any transformations
or interactions of variables that will appear in the analysis model.

In fact, it is often useful to add more information to the imputation model
than will be present when the analysis is run. Since imputation is predictive, any
variables that would increase predictive power should be included in the model,
even if including them in the analysis model would produce bias in estimating a
causal effect (such as for post-treatment variables) or collinearity would preclude
determining which variable had a relationship with the dependent variable (such
as including multiple alternate measures of GDP). In our case, we include all the
variables in freetrade in the imputation model, even though our analysis model
focuses on polity, pop and gdp.pc6.

To create multiple imputations in Amelia, we can simply run

> a.out <- amelia(freetrade, m = 5, ts = "year", cs = "country")

-- Imputation 1 --

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

-- Imputation 2 --

1 2 3 4 5 6 7 8 9 10 11 12 13 14

-- Imputation 3 --

6Note that this specification does not utilize time or spatial data yet. The ts and cs arguments
only have force when we also include polytime or intercs, discussed in section 4.5
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

-- Imputation 4 --

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

21

-- Imputation 5 --

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

> a.out

Amelia output with 5 imputed datasets.

Return code: 1

Message: Normal EM convergence.

Chain Lengths:

--------------

Imputation 1: 16

Imputation 2: 14

Imputation 3: 15

Imputation 4: 21

Imputation 5: 17

Note that our example dataset is deliberately small both in variables and in
cross-sectional elements. Typical datasets may often have hundreds or possibly a
couple thousand steps to the EM algorithm. Long chains should remind the ana-
lyst to consider whether transformations of the variables would more closely fit the
multivariate normal assumptions of the model (correct but omitted transformations
will shorten the number of steps and improve the fit of the imputations), but do not
necessarily denote problems with the imputation model.

The output gives some information about how the algorithm ran. Each of the
imputed datasets is now in the list a.out$imputations. Thus, we could plot a
histogram of the tariff variable from the 3rd imputation,

> hist(a.out$imputations[[3]]$tariff, col="grey", border="white")

4.2.1 Saving imputed datasets

If you need to save your imputed datasets, one direct method is to save the output
list from amelia,

> save(a.out, file = "imputations.RData")

As in the previous example, the ith imputed datasets can be retrieved from this
list as a.out$imputations[[i]].

In addition, you can save each of the imputed datasets to its own file using the
write.amelia command,

11
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Figure 2: Histogram of the tariff variable from the 3rd imputed dataset.
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> write.amelia(obj=a.out, file.stem = "outdata")

This will create one comma-separated value file for each imputed dataset in the
following manner:

outdata1.csv

outdata2.csv

outdata3.csv

outdata4.csv

outdata5.csv

The write.amelia function can also save files in tab-delimited and Stata (.dta) file
formats. For instance, to save Stata files, simply change the format argument to
"dta",

> write.amelia(obj=a.out, file.stem = "outdata", format = "dta")

Additionally, write.amelia can create a“stacked”version of the imputed dataset
which stacks each imputed dataset on top of one another. This can be done by setting
the separate argument to FALSE. The resulting matrix is of size (N ·m)× p if the
original dataset is excluded (orig.data = FALSE) and of size (N · (m + 1)) × p if
it is included (orig.data = TRUE). The stacked dataset will include a variable
(set with impvar) that indicates to which imputed dataset the observation belongs.
See Section 4.9 for a description of how to use this stacked dataset with the mi

commands in Stata.

4.2.2 Combining Multiple Amelia Runs

The EMB algorithm is what computer scientists call embarrassingly parallel, meaning
that it is simple to separate each imputation into parallel processes. With Amelia it
is simple to run subsets of the imputations on different machines and then combine
them after the imputation for use in analysis model. This allows for a huge increase
in the speed of the algorithm.

Output lists from different Amelia runs can be combined together into a new list.
For instance, suppose that we wanted to add another ten imputed datasets to our
earlier call to amelia. First, run the function to get these additional imputations,

> a.out.more <- amelia(freetrade, m = 10, ts = "year", cs = "country", p2s=0)

> a.out.more

Amelia output with 10 imputed datasets.

Return code: 1

Message: Normal EM convergence.

Chain Lengths:

--------------

Imputation 1: 15

Imputation 2: 13
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Imputation 3: 11

Imputation 4: 21

Imputation 5: 13

Imputation 6: 14

Imputation 7: 11

Imputation 8: 10

Imputation 9: 12

Imputation 10: 10

then combine this output with our original output using the ameliabind function,

> a.out.more <- ameliabind(a.out, a.out.more)

> a.out.more

Amelia output with 15 imputed datasets.

Return code: 1

Message: Normal EM convergence

Chain Lengths:

--------------

Imputation 1: 16

Imputation 2: 14

Imputation 3: 15

Imputation 4: 21

Imputation 5: 17

Imputation 6: 15

Imputation 7: 13

Imputation 8: 11

Imputation 9: 21

Imputation 10: 13

Imputation 11: 14

Imputation 12: 11

Imputation 13: 10

Imputation 14: 12

Imputation 15: 10

This function binds the two outputs into the same output so that you can pass
the combined imputations easily to analysis models and diagnostics. Note that
a.out.more now has a total of 15 imputations.

A simple way to execute a parallel processing scheme with Amelia would be to
run amelia with m set to 1 on m different machines or processors, save each output
using the save function, load them all on the same R session using load command
and then combine them using ameliabind. In order to do this, however, make sure
to name each of the outputs a different name so that they do not overwrite each
other when loading into the same R session. Also, some parallel environments will
dump all generated files into a common directory, where they may overwrite each
other. If it is convenient in a parallel environment to run a large number of amelia
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calls from a single piece of code, one useful way to avoid overwriting is to create the
file.stem with a random suffix. For example:

> b<-round(runif(1,min=1111,max=9999))

> random.name<-paste("am",b,sep="")

> amelia <- write.amelia(obj=a.out, file.stem = random.name)

4.2.3 Screen Output

Screen output can be adjusted with the “print to screen” argument, p2s. At a value
of 0, no screen printing will occur. This may be useful in large jobs or simulations
where a very large number of imputation models may be required. The default value
of 1, lists each bootstrap, and displays the number of iterations required to reach
convergence in that bootstrapped dataset. The value of 2 gives more thorough screen
output, including, at each iteration, the number of parameters that have significantly
changed since the last iteration. This may be useful when the EM chain length is
very long, as it can provide an intuition for many parameters still need to converge
in the EM chain, and a sense of the time remaining. However, it is worth noting that
the last several parameters can often take a significant fraction of the total number
of iterations to converge. Setting p2s to 2 will also generate information on how
EM algorithm is behaving, such as a ! when the current estimated complete data
covariance matrix is not invertible and a * when the likelihood has not monotonically
increased in that step. Having many of these two symbols in the screen output is
an indication of a problematic imputation model7.

An example of the output when p2s is 2 would be

> amelia(freetrade, m = 1, ts = "year", cs = "country", p2s = 2)

amelia starting

beginning prep functions

Variables used: tariff polity pop gdp.pc intresmi signed fiveop usheg

running bootstrap

-- Imputation 1 --

setting up EM chain indicies

1(44) 2(35) 3(26) 4(23) 5(18) 6(15) 7(15) 8(12) 9(10)10(7)

11(5)12(2)13(0)

saving and cleaning

Amelia output with 1 imputed datasets.

Return code: 1

Message: Normal EM convergence.

7Problems of non-invertible matrices often mean that current guess for the covariance matrix is
singular. This is a sign that there may be two highly correlated variables in the model. One way
to resolve is to use a ridge prior (see 4.6.1)
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Chain Lengths:

--------------

Imputation 1: 13

4.3 Imputation-improving Transformations

Social science data commonly includes variables that fail to fit to a multivariate
normal distribution. Indeed, numerous models have been introduced specifically to
deal with the problems they present. As it turns out, much evidence in the literature
(discussed in King et al. 2001) indicates that the multivariate normal model used
in Amelia usually works well for the imputation stage even when discrete or non-
normal variables are included and when the analysis stage involves these limited
dependent variable models. Nevertheless, Amelia includes some limited capacity to
deal directly with ordinal and nominal variables and to modify variables that require
other transformations. In general nominal and log transform variables should be
declared to Amelia, whereas ordinal (including dichotomous) variables often need
not be, as described below. (For harder cases, see (Schafer, 1997), for specialized
MCMC-based imputation models for discrete variables.)

Although these transformations are taken internally on these variables to better
fit the data to the multivariate normal assumptions of the imputation model, all the
imputations that are created will be returned in the original untransformed form of
the data. If the user has already performed transformations on their data (such as
by taking a log or square root prior to feeding the data to amelia) these do not need
to be declared, as that would result in the transformation occurring doubly in the
imputation model. The fully imputed data sets that are returned will always be in
the form of the original data that is passed to the amelia routine.

4.3.1 Ordinal

In much statistical research, researchers treat independent ordinal (including di-
chotomous) variables as if they were really continuous. If the analysis model to be
employed is of this type, then nothing extra is required of the of the imputation
model. Users are advised to allow Amelia to impute non-integer values for any
missing data, and to use these non-integer values in their analysis. Sometimes this
makes sense, and sometimes this defies intuition. One particular imputation of 2.35
for a missing value on a seven point scale carries the intuition that the respondent
is between a 2 and a 3 and most probably would have responded 2 had the data
been observed. This is easier to accept than an imputation of 0.79 for a dichotomous
variable where a zero represents a male and a one represents a female respondent.
However, in both cases the non-integer imputations carry more information about
the underlying distribution than would be carried if we were to force the imputa-
tions to be integers. Thus whenever the analysis model permits, missing ordinal
observations should be allowed to take on continuously valued imputations.

In the freetrade data, one such ordinal variable is polity which ranges from
-10 (full autocracy) to 10 (full democracy). If we tabulate this variable from one of
the imputed datasets,
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> table(a.out$imputations[[3]]$polity)

-8 -7 -6

1 22 4

-5 -4 -3.85761223879231

7 3 1

-2 -1 2

9 1 7

3 4 5

7 15 26

6 6.36461808491675 7

13 1 5

8 9

36 13

we can see that there is one imputation between -4 and -3 and one imputation
between 6 and 7. Again, the interpretation of these values is rather straightforward
even if they are not strictly in the coding of the original Polity data.

Often, however, analysis models require some variables to be strictly ordinal, as
for example, when the dependent variable will be modeled in a logistical or Pois-
son regression. Imputations for variables set as ordinal are created by taking the
continuously valued imputation and using an appropriately scaled version of this as
the probability of success in a binomial distribution. The draw from this binomial
distribution is then translated back into one of the ordinal categories.

For our data we can simply add polity to the ords argument:

> a.out1 <- amelia(freetrade, m = 5, ts = "year", cs = "country", ords =

+ "polity", p2s = 0)

> table(a.out1$imputations[[3]]$polity)

-8 -7 -6 -5 -4 -2 -1 2 3 4 5 6 7 8 9

1 22 4 8 3 9 1 7 7 15 27 13 5 36 13

Now, we can see that all of the imputations fall into one of the original polity
categories.

4.3.2 Nominal

Nominal variables8 must be treated quite differently than ordinal variables. Any
multinomial variables in the data set (such as religion coded 1 for Catholic, 2 for
Jewish, and 3 for Protestant) must be specified to Amelia. In our freetrade dataset,
we have signed which is 1 if a country signed an IMF agreement in that year and 0
if it did not. Of course, our first imputation did not limit the imputations to these
two categories

> table(a.out1$imputations[[3]]$signed)

8Dichotomous (two category) variables are a special case of nominal variables. For these vari-
ables, the nominal and ordinal methods of transformation in Amelia agree.
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0 0.0049766921685018 0.0650017766328816

142 1 1

0.184594066476458 1

1 26

In order to fix this for a p-category multinomial variable,Amelia will determine p
(as long as your data contain at least one value in each category), and substitute p−1
binary variables to specify each possible category. These new p− 1 variables will be
treated as the other variables in the multivariate normal imputation method chosen,
and receive continuous imputations. These continuously valued imputations will
then be appropriately scaled into probabilities for each of the p possible categories,
and one of these categories will be drawn, where upon the original p-category multi-
nomial variable will be reconstructed and returned to the user. Thus all imputations
will be appropriately multinomial.

For our data we can simply add signed to the noms argument:

> a.out2 <- amelia(freetrade, m = 5, ts = "year", cs = "country", noms =

+ "signed", p2s = 0)

> table(a.out2$imputations[[3]]$signed)

0 1

144 27

Note that Amelia can only fit imputations into categories that exist in the original
data. Thus, if there was a third category of signed, say 2, that corresponded to a
different kind of IMF agreement, but it never occurred in the original data, Amelia
could not match imputations to it.

Since Amelia properly treats a p-category multinomial variable as p−1 variables,
one should understand the number of parameters that are quickly accumulating if
many multinomial variables are being used. If the square of the number of real and
constructed variables is large relative to the number of observations, it is useful to
use a ridge prior as in section 4.6.1.

4.3.3 Natural Log

If one of your variables is heavily skewed or has outliers that may alter the imputation
in an unwanted way, you can use a natural logarithm transformation of that variable
in order to normalize its distribution. This transformed distribution helps Amelia
to avoid imputing values that depend too heavily on outlying data points. Log
transformations are common in expenditure and economic variables where we have
strong beliefs that the marginal relationship between two variables decreases as we
move across the range.

For instance, figure 3 show the tariff variable clearly has positive (or, right)
skew while its natural log transformation has a roughly normal distribution.
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Figure 3: Histogram of tariff and log(tariff).

4.3.4 Square Root

Event count data is often heavily skewed and has nonlinear relationships with other
variables. One common transformation to tailor the linear model to count data is
to take the square roots of the counts. This is a transformation that can be set as
an option in Amelia.

4.3.5 Logistic

Proportional data is sharply bounded between 0 and 1. A logistic transformation
is one possible option in Amelia to make the distribution symmetric and relatively
unbounded.

4.4 Identification Variables

Datasets often contain identification variables, such as country names, respondent
numbers, or other identification numbers, codes or abbreviations. Sometimes these
are text and sometimes these are numeric. Often it is not appropriate to include
these variables in the imputation model, but it is useful to have them remain in the
imputed datasets (However, there are models that would include the ID variables in
the imputation model, such as fixed effects model for data with repeated observations
of the same countries). Identification variables which are not to be included in the
imputation model can be identified with the argument idvars. These variables will
not be used in the imputation model, but will be kept in the imputed datasets.

If the year and country contained no information except labels, we could omit
them from the imputation:

> amelia(freetrade, idvars = c("year", "country"))
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Note that Amelia will return with an error if your dataset contains a factor or
character variable that is not marked as a nominal or identification variable. Thus,
if we were to omit the factor country from the cs or idvars arguments, we would
receive an error:

> a.out2 <- amelia(freetrade, idvars = c("year"))

Amelia Error Code: 38

The following variable(s) are characters:

country

You may have wanted to set this as a ID variable to remove it

from the imputation model or as an ordinal or nominal

variable to be imputed. Please set it as either and

try again.

In order to conserve memory, it is wise to remove unnecessary variables from a
data set before loading it into Amelia. The only variables you should include in
your data when running Amelia are variables you will use in the analysis stage and
those variables that will help in the imputation model. While it may be tempting
to simply mark unneeded variables as IDs, it only serves to waste memory and slow
down the imputation procedure.

4.5 Time Series, or Time Series Cross Sectional Data

Many variables that are recorded over time within a cross-sectional unit are observed
to vary smoothly over time. In such cases, knowing the observed values of obser-
vations close in time to any missing value may enormously aid the imputation of
that value. However, the exact pattern may vary over time within any cross-section.
There may be periods of growth, stability, or decline; in each of which the observed
values would be used in a different fashion to impute missing values. Also, these
patterns may vary enormously across different cross-sections, or may exist in some
and not others. Amelia can build a general model of patterns within variables across
time by creating a sequence of polynomials of the time index. If, for example, tariffs
vary smoothly over time, then we make the modeling assumption that there exists
some polynomial that describes the economy in cross-sectional unit i at time t as:

tariffti = β0 + β1t + β1t
2 + β1t

3 . . . (9)

And thus if we include enough higher order terms of time then the pattern between
observed values of the tariff rate can be estimated. Amelia will create polynomials
of time up to the user defined k-th order, (k ≤ 3).

We can implement this with the ts and polytime arguments. If we thought that
a second-order polynomial would help predict we could run

> a.out2 <- amelia(freetrade, ts = "year", cs = "country", polytime = 2)

With this input, Amelia will add covariates to the model that correspond to time
and its polynomials. These covariates will help better predict the missing values.
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Figure 4: The increase in predictive power when using polynomials of time. The
panels shows mean imputations with 95% bands (in red) and observed data point
(in black). The left panel shows an imputation without using time and the right
panel includes polynomials of time.

If cross-sectional units are specified these polynomials can be interacted with the
cross-section unit to allow the patterns over time to vary between cross-sectional
units. Unless you strongly believe all units have the same patterns over time in all
variables (including the same constant term), this is a reasonable setting. When k
is set to 0, this interaction simply results in a model of fixed effects where every unit
has a uniquely estimated constant term. Amelia does not smooth the observed data,
and only uses this functional form, or one you choose, with all the other variables
in the analysis and the uncertainty of the prediction, to impute the missing values.

In order to impute with trends specific to each cross-sectional unit, we can set
intercs to TRUE:

> a.out.time <- amelia(freetrade, ts = "year", cs = "country", polytime = 2,

+ intercs = TRUE, p2s = 2)

Note that attempting to use polytime without the ts argument, or intercs

without the cs argument will result in an error.
Using the tscsPlot function (discussed below), we can see in figure 4 that we

have a much better prediction about the missing values when incorporating time
than when we omit it:

> tscsPlot(a.out, cs = "Malaysia", main = "Malaysia (no time settings)",

+ var = "tariff", ylim = c(-10, 60))

> tscsPlot(a.out.time, cs = "Malaysia", main = "Malaysia (with time settings)",

+ var = "tariff", ylim = c(-10, 60))
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4.5.1 Lags and Leads

An alternative way of handling time-series information is to include lags and leads of
certain variables into the imputation model. Lags are variables that take the value
of another variable in the previous time period while leads take the value of another
variable in the next time period. Many analysis models use lagged variables to deal
with issues of endogeneity, thus using leads may seems strange. It is important to
remember, however, that imputation models are predictive, not causal. Thus, since
both past and future values of a variable are likely correlated with the present value,
both lags and leads should improve the model.

If we wanted to include lags and leads of tariffs, for instance, we would simply
pass this to the lags and leads arguments:

> a.out2 <- amelia(freetrade, ts = "year", cs = "country", lags = "tariff",

+ leads = "tariff")

4.6 Including Prior Information

Amelia has a number of methods of setting priors within the imputation model.
Two of these are commonly used and discussed below, ridge priors and observational
priors.

4.6.1 Ridge Priors for High Missingness, Small n’s, or Large Correla-
tions

When the data to be analyzed contain a high degree of missingness or very strong
correlations among the variables, or when the number of observations is only slightly
greater than the number of parameters p(p + 3)/2 (where p is the number of vari-
ables), results from your analysis model will be more dependent on the choice of
imputation model. This suggests more testing in these cases of alternative specifica-
tions under Amelia. This can happen when using the polynomials of time interacted
with the cross section are included in the imputation model. In our running example,
we used a polynomial of degree 2 and there are 9 countries. This adds 3×9−1 = 17
more variables to the imputation model (One of the constant “fixed effects” will be
dropped so the model will be identified). When these are added, the EM algorithm
can become unstable, as indicated by the vastly differing chain lengths for each
imputation:

> a.out.time

Amelia output with 5 imputed datasets.

Return code: 1

Message: Normal EM convergence.

Chain Lengths:

--------------

Imputation 1: 67

Imputation 2: 71
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Imputation 3: 123

Imputation 4: 95

Imputation 5: 165

In these circumstances, we recommend adding a ridge prior which will help with
numerical stability by shrinking the covariances among the variables toward zero
without changing the means or variances. This can be done by including the empri

argument. Including this prior as a positive number is roughly equivalent to adding
empri artificial observations to the data set with the same means and variances
as the existing data but with zero covariances. Thus, increasing the empri setting
results in more shrinkage of the covariances, thus putting more a priori structure
on the estimation problem: like many Bayesian methods, it reduces variance in
return for an increase in bias that one hopes does not overwhelm the advantages
in efficiency. In general, we suggest keeping the value on this prior relatively small
and increase it only when necessary. A recommendation of 0.5 to 1 percent of the
number of observations, n, is a reasonable starting value, and often useful in large
datasets to add some numerical stability. For example, in a dataset of two thousand
observations, this would translate to a prior value of 10 or 20 respectively. A prior of
up to 5 percent is moderate in most applications and 10 percent is reasonable upper
bound.

For our data, it is easy to code up a 1 percent ridge prior:

> a.out.time2 <- amelia(freetrade, ts = "year", cs = "country", polytime = 2,

+ intercs = TRUE, p2s = 0, empri = .01*nrow(freetrade))

> a.out.time2

Amelia output with 5 imputed datasets.

Return code: 1

Message: Normal EM convergence.

Chain Lengths:

--------------

Imputation 1: 16

Imputation 2: 22

Imputation 3: 16

Imputation 4: 14

Imputation 5: 16

This new imputation model is much more stable and, as shown by using tscsPlot,
produces about the same imputations as the original model (see figure 5):

> tscsPlot(a.out.time, cs = "Malaysia", main = "Malaysia (no ridge prior)",

+ var = "tariff", ylim = c(-10, 60))

> tscsPlot(a.out.time2, cs = "Malaysia", main = "Malaysia (with ridge prior)",

+ var = "tariff", ylim = c(-10, 60))
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Figure 5: The difference in imputations when using no ridge prior (left) and when
using a ridge prior set to 1% of the data (right).

4.6.2 Observation-level priors

Researchers often have additional prior information about missing data values based
on previous research, academic consensus, or personal experience. Amelia can in-
corporate this information to produce vastly improved imputations. The Amelia
algorithm allows users to include informative Bayesian priors about individual miss-
ing data cells instead of the more general model parameters, many of which have
little direct meaning.

The incorporation of priors follows basic Bayesian analysis where the imputation
turns out to be a weighted average of the model-based imputation and the prior
mean, where the weights are functions of the relative strength of the data and prior:
when the model predicts very well, the imputation will down-weight the prior, and
vice versa (Honaker and King, 2010).

The priors about individual observations should describe the analyst’s belief
about the distribution of the missing data cell. This can either take the form of
a mean and a standard deviation or a confidence interval. For instance, we might
know that 1986 tariff rates in Thailand around 40%, but we have some uncertainty
as to the exact value. Our prior belief about the distribution of the missing data cell,
then, centers on 40 with a standard deviation that reflects the amount of uncertainty
we have about our prior belief.

To input priors you must build a priors matrix with either four or five columns.
Each row of the matrix represents a prior on either one observation or one variable.
In any row, the entry in the first column is the row of the observation and the entry
is the second column is the column of the observation. In the four column priors
matrix the third and fourth columns are the mean and standard deviation of the
prior distribution of the missing value.

For instance, suppose that we had some expert prior information about tariff
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rates in Thailand. We know from the data that Thailand is missing tariff rates in
many years,

> freetrade[freetrade$country == "Thailand", c("year","country","tariff")]

year country tariff

153 1981 Thailand 32.3

154 1982 Thailand NA

155 1983 Thailand NA

156 1984 Thailand NA

157 1985 Thailand 41.2

158 1986 Thailand NA

159 1987 Thailand NA

160 1988 Thailand NA

161 1989 Thailand 40.8

162 1990 Thailand 39.8

163 1991 Thailand 37.8

164 1992 Thailand NA

165 1993 Thailand 45.6

166 1994 Thailand 23.3

167 1995 Thailand 23.1

168 1996 Thailand NA

169 1997 Thailand NA

170 1998 Thailand 20.1

171 1999 Thailand 17.1

> #$

Suppose that we had expert information that tariff rates were roughly 40% in
Thailand between 1986 and 1988 with about a 6% margin of error. This corresponds
to a standard deviation of about 3. In order to include this information, we must
form the priors matrix:

> pr <- matrix(c(158,159,160,3,3,3,40,40,40,3,3,3), nrow=3, ncol=4)

> pr

[,1] [,2] [,3] [,4]

[1,] 158 3 40 3

[2,] 159 3 40 3

[3,] 160 3 40 3

The first column of this matrix corresponds to the row numbers of Thailand in
these three years, the second column refers to the column number of tariff in the
data and the last two columns refer to the actual prior. Once we have this matrix,
we can pass it to amelia,

> a.out.pr <- amelia(freetrade, ts = "year", cs = "country", priors = pr)
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In the five column matrix, the last three columns describe a confidence range of
the data. The columns are a lower bound, an upper bound, and a confidence level
between 0 and 1, exclusive. Whichever format you choose, it must be consistent
across the entire matrix. We could get roughly the same prior as above by utilizing
this method. Our margin of error implies that we would want imputations between
34 and 46, so our matrix would be

> pr.2 <- matrix(c(158,159,160,3,3,3,34,34,34,46,46,46,.95,.95,.95), nrow=3, ncol=5)

> pr.2

[,1] [,2] [,3] [,4] [,5]

[1,] 158 3 34 46 0.95

[2,] 159 3 34 46 0.95

[3,] 160 3 34 46 0.95

These priors indicate that we are 95% confident that these missing values are in the
range 34 to 46.

If a prior has the value 0 in the first column, this prior will be applied to all
missing values in this variable, except for explicitly set priors. Thus, we could set
a prior for the entire tariff variable of 20, but still keep the above specific priors
with the following code:

> pr.3 <- matrix(c(158,159,160,0,3,3,3,3,40,40,40,20,3,3,3,5), nrow=4, ncol=4)

> pr.3

[,1] [,2] [,3] [,4]

[1,] 158 3 40 3

[2,] 159 3 40 3

[3,] 160 3 40 3

[4,] 0 3 20 5

4.6.3 Logical bounds

In some cases, variables in the social sciences have known logical bounds. Pro-
portions must be between 0 and 1 and duration data must be greater than 0, for
instance. Many of these logical bounds can be handled by using the correct trans-
formation for that type of variable (see 4.3 for more details on the transformations
handled by Amelia). In the occasional case that imputations must satisfy certain
logical bounds not handled by these transformations, Amelia can take draws from
a truncated normal distribution in order to achieve imputations that satisfy the
bounds. Note, however, that this procedure imposes extremely strong restrictions
on the imputations and can lead to lower variances than the imputation model im-
plies. The mean value across all the imputed values of a missing cell is the best
guess from the imputation model of that missing value. The variance of the distri-
bution across imputed datasets correctly reflects the uncertainty in that imputation.
It is often the mean imputed value that should conform to the any known bounds,
even if individual imputations are drawn beyond those bounds. The mean imputed
value can be checked with the diagnostics presented in the next section. In general,

26



building a more predictive imputation model will lead to better imputations than
imposing bounds.

Amelia implements these bounds by rejection sampling. When drawing the im-
putations from their posterior, we repeatedly resample until we have a draw that
satisfies all of the logical constraints. You can set an upper limit on the number of
times to resample with the max.resample arguments. Thus, if after max.resample
draws, the imputations are still outside the bounds, Amelia will set the imputation
at the edge of the bounds. Thus, if the bounds were 0 and 100 and all of the draws
were negative, Amelia would simply impute 0.

As an extreme example, suppose that we know, for certain that tariff rates had to
fall between 30 and 40. This, obviously, is not true, but we can generate imputations
from this model. In order to specify these bounds, we need to generate a matrix of
bounds to pass to the bounds argument. This matrix will have 3 columns: the first
is the column for the bounded variable, the second is the lower bound and the third
is the upper bound. Thus, to implement our bound on tariff rates (the 3rd column
of the dataset), we would create the matrix,

> bds <- matrix(c(3, 30, 40), nrow = 1, ncol = 3)

> bds

[,1] [,2] [,3]

[1,] 3 30 40

which we can pass to the bounds argument,

> a.out.bds <- amelia(freetrade, ts = "year", cs = "country", bounds = bds,

+ max.resample = 1000)

-- Imputation 1 --

1 2 3 4 5 6 7 8 9 10 11 12

-- Imputation 2 --

1 2 3 4 5 6 7 8 9 10 11 12 13

-- Imputation 3 --

1 2 3 4 5 6 7 8 9 10 11 12

-- Imputation 4 --

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

21

-- Imputation 5 --

1 2 3 4 5 6 7 8 9 10 11 12 13
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Figure 6: On the left are the original imputations without logical bounds and on the
right are the imputation after imposing the bounds.

The difference in results between the bounded and unbounded model are not
obvious from the output, but inspection of the imputed tariff rates for Malaysia in
figure 6 shows that there has been a drastic restriction of the imputations to the
desired range:

> tscsPlot(a.out, cs = "Malaysia", main = "No logical bounds", var =

+ "tariff", ylim = c(-10,60))

> tscsPlot(a.out.bds, cs = "Malaysia", main = "Bounded between 30 and 40", var =

+ "tariff", ylim = c(-10,60))

Again, analysts should be extremely cautious when using these bounds as they
can seriously affect the inferences from the imputation model, as shown in this
example. Even when logical bounds exist, we recommend simply imputing variables
normally, as the violation of the logical bounds represents part of the true uncertainty
of imputation.

4.7 Diagnostics

Amelia currently provides a number of diagnostic tools to inspect the imputations
that are created.

4.7.1 Comparing Densities

One check on the plausibility of the imputation model is check the distribution of
imputed values to the distribution of observed values. Obviously we cannot expect,
a priori, that these distribution will be identical as the missing values may differ
systematically from the observed value–this is fundamental reason to impute to
begin with! Imputations with strange distributions or those that are far from the

28



−20 0 20 40 60 80 100

0.
00

0
0.

01
0

0.
02

0

Observed and Imputed values of tariff

tariff   −−  Fraction Missing: 0.339

R
el

at
iv

e 
D

en
si

ty

−10 −5 0 5 10 15

0.
00

0.
05

0.
10

0.
15

0.
20

Observed and Imputed values of polity

polity   −−  Fraction Missing: 0.012

R
el

at
iv

e 
D

en
si

ty

0e+00 4e+08 8e+08

0e
+

00
4e

−
09

8e
−

09

Observed values of pop

N = 171   Bandwidth = 2.431e+07

D
en

si
ty

0 5000 10000

0e
+

00
2e

−
04

4e
−

04

Observed values of gdp.pc

N = 171   Bandwidth = 490.6

D
en

si
ty

Figure 7: The output of the plot method as applied to output from amelia. In
the upper panels, the distribution of mean imputations (in red) is overlayed on the
distribution of observed values (in black) for each variable. In the lower panels, there
are no missing values and the distribution of observed values is simply plotted (in
blue). Note that now imputed tariff rates are very similar to observed tariff rates,
but the imputation of the Polity score are quite different. This is plausible if different
types of regimes tend to be missing at different rates.

observed data may indicate that imputation model needs at least some investigation
and possibly some improvement.

The plot method works on output from amelia and, by default, shows for each
variable a plot of the relative frequencies of the observed data with an overlay of the
relative frequency of the imputed values.

> plot(a.out, which.vars = 3:6)

where the argument which.vars indicates which of the variables to plot (in this
case, we are taking the 3rd through the 6th variables).

The imputed curve (in red) plots the density of the mean imputation over the m
datasets. That is, for each cell that is missing in the variable, the diagnostic will find
the mean of that cell across each of the m datasets and use that value for the density
plot. The black distributions are the those of the observed data. When variables
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are completely observed, their densities are plotted in blue. These graphs will allow
you to inspect how the density of imputations compares to the density of observed
data. Some discussion of these graphs can be found in Abayomi, Gelman and Levy
(2008). Minimally, these graphs can be used to check that the mean imputation falls
within known bounds, when such bounds exist in certain variables or settings.

We can also use the function compare.density directly to make these plots for
an individual variable:

> compare.density(a.out, var = "signed")

4.7.2 Overimpute

Overimputing is a technique we have developed to judge the fit of the imputation
model. Because of the nature of the missing data mechanism, it is impossible to
tell whether the mean prediction of the imputation model is close to the unobserved
value that is trying to be recovered. By definition this missing data does not exist to
create this comparison, and if it existed we would no longer need the imputations or
care about their accuracy. However, a natural question the applied researcher will
often ask is how accurate are these imputed values?

Overimputing involves sequentially treating each of the observed values as if
they had actually been missing. For each observed value in turn we then generate
several hundred imputed values of that observed value, as if it had been missing.
While m = 5 imputations are sufficient for most analysis models, this large number
of imputations allows us to construct a confidence interval of what the imputed
value would have been, had any of the observed data been missing. We can then
graphically inspect whether our observed data tends to fall within the region where
it would have been imputed had it been missing.

For example, we can run the overimputation diagnostic on our data by running

> overimpute(a.out, var = "tariff")

Our overimputation diagnostic, shown in 8, runs this procedure through all of
the observed values for a user selected variable. We can graph the estimates of
each observation against the true values of the observation. On this graph, a y = x
line indicates the line of perfect agreement; that is, if the imputation model was a
perfect predictor of the true value, all the imputations would fall on this line. For
each observation, Amelia also plots 90% confidence intervals that allows the user to
visually inspect the behavior of the imputation model. By checking how many of
the confidence intervals cover the y = x line, we can tell how often the imputation
model can confidently predict the true value of the observation.

Occasionally, the overimputation can display unintuitive results. For example,
different observations may have different numbers of observed covariates. If covari-
ates that are useful to the prediction are themselves missing, then the confidence
interval for this observation will be much larger. In the extreme, there may be ob-
servations where the observed value we are trying to overimpute is the only observed
value in that observation, and thus there is nothing left to impute that observation
with when we pretend that it is missing, other than the mean and variance of that
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Figure 8: An example of the overimputation diagnostic graph. Here ninety percent
confidence intervals are constructed that detail where an observed value would have
been imputed had it been missing from the dataset, given the imputation model.
The dots represent the mean imputation. Around ninety percent of these confidence
intervals contain the y = x line, which means that the true observed value falls
within this range. The color of the line (as coded in the legend) represents the
fraction of missing observations in the pattern of missingness for that observation.
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Figure 9: Another example of the overimpute diagnostic graph. Note that the red
lines are those observations that have fewer covariates observed and have a higher
variance across the imputed values.
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variable. In these cases, we should correctly expect the confidence interval to be
very large.

An example of this graph is shown in figure 9. In this simulated bivariate dataset,
one variable is overimputed and the results displayed. The second variable is either
observed, in which case the confidence intervals are very small and the imputa-
tions (yellow) are very accurate, or the second variable is missing in which case this
variable is being imputed simply from the mean and variance parameters, and the
imputations (red) have a very large and encompassing spread. The circles represent
the mean of all the imputations for that value. As the amount of missing information
in a particular pattern of missingness increases, we expect the width of the confi-
dence interval to increase. The color of the confidence interval reflects the percent
of covariates observed in that pattern of missingness, as reflected in the legend at
the bottom.

4.7.3 Overdispersed Starting Values

If the data given to Amelia has a poorly behaved likelihood, the EM algorithm
can have problems finding a global maximum of the likelihood surface and starting
values can begin to effect imputations. Because the EM algorithm is deterministic,
the point in the parameter space where you start it can impact where it ends, though
this is irrelevant when the likelihood has only one mode. However, if the starting
values of an EM chain are close to a local maximum, the algorithm may find this
maximum, unaware that there is a global maximum farther away. To make sure that
our imputations do not depend on our starting values, a good test is to run the EM
algorithm from multiple, dispersed starting values and check their convergence. In a
well behaved likelihood, we will see all of these chains converging to the same value,
and reasonably conclude that this is the likely global maximum. On the other hand,
we might see our EM chain converging to multiple locations. The algorithm may also
wander around portions of the parameter space that are not fully identified, such as
a ridge of equal likelihood, as would happen for example, if the same variable were
accidentally included in the imputation model twice.

Amelia includes a diagnostic to run the EM chain from multiple starting values
that are overdispersed from the estimated maximum. The overdispersion diagnostic
will display a graph of the paths of each chain. Since these chains move through
spaces that are in an extremely high number of dimensions and can not be graphically
displayed, the diagnostic reduces the dimensionality of the EM paths by showing
the paths relative to the largest principle components of the final mode(s) that are
reached. Users can choose between graphing the movement over the two largest
principal components, or more simply the largest dimension with time (iteration
number) on the x-axis. The number of EM chains can also be adjusted. Once the
diagnostic draws the graph, the user can visually inspect the results to check that
all chains convergence to the same point.

For our original model, this is a simple call to disperse:

> disperse(a.out, dims = 1, m = 5)

> disperse(a.out, dims = 2, m = 5)
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where m designates the number of places to start EM chains from and dims are
the number of dimensions of the principal components to show.
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Figure 10: A plot from the overdispersion diagnostic where all EM chains are con-
verging to the same mode, regardless of starting value. On the left, the y-axis
represents movement in the (very high dimensional) parameter space, and the x-
axis represents the iteration number of the chain. On the right, we visualize the
parameter space in two dimensions using the first two principal components of the
end points of the EM chains. The iteration number is no longer represented on the
y-axis, although the distance between iterations is marked by the distance between
arrowheads on each chain.

In one dimension, the diagnostic plots movement of the chain on the y-axis and
time, in the form of the iteration number, on the x-axis. Figures 4.7.3 show two
examples of these plots. The first shows a well behaved likelihood, as the starting
values all converge to the same point. The black horizontal line is the point where
Amelia converges when it uses the default method for choosing the starting values.
The diagnostic takes the end point of this chain as the possible maximum and
disperses the starting values away from it to see if the chain will ever finish at
another mode.

A few of the iterations of this diagnostic can ending up in vastly different locations
of the parameter space. This can happen for a variety of reasons. For instance,
suppose that we created another dataset and accidentally included a linear function
of another variable in this dataset:

> freetrade2 <- freetrade

> freetrade2$tariff2 <- freetrade2$tariff*2+3

If we tried to impute this dataset, Amelia could draw imputations without any
problems:

> a.out.bad <- amelia(freetrade2, ts = "year", cs = "country")
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-- Imputation 1 --

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

-- Imputation 2 --

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

-- Imputation 3 --

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

-- Imputation 4 --

1 2 3 4 5 6 7 8 9 10 11 12 13

-- Imputation 5 --

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

> a.out.bad

Amelia output with 5 imputed datasets.

Return code: 1

Message: Normal EM convergence.

Chain Lengths:

--------------

Imputation 1: 16

Imputation 2: 15

Imputation 3: 18

Imputation 4: 13

Imputation 5: 17

But if we were to run disperse, we would end up with the problematic figure
4.7.3:

> disperse(a.out.bad, dims = 1, m = 10)

While this is a special case of a problematic likelihood, situations very similar
to this can go undetected without using the proper diagnostics. More generally,
an unidentified imputation model will lead to non-unique ML estimates (see King
(1989) for a more detailed discussion of identification and likelihoods).

4.7.4 Time-series plots

As discussed above, information about time trends and fixed effects can help produce
better imputations. One way to check the plausibility of our imputation model is
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Figure 11: A problematic plot from the overdispersion diagnostic showing that EM
chains are converging to one of two different modes, depending upon the starting
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Figure 12: Tariff rates in Malaysia, 1980-2000. An example of the tscsPlot function,
the black points are observed values of the time series and the red points are the
mean of the imputation distributions. The red lines represent the 95% confidence
bands of the imputation distribution.

to see how it predicts missing values in a time series. If the imputations for the
Malaysian tariff rate were drastically higher in 1990 than the observed years of 1989
or 1991, we might worry that there is a problem in our imputation model. Checking
these time series is easy to do with the tscsPlot command. Simply choose the
variable (with the var argument) and the cross-section (with the cs argument) to
plot the observed time-series along with distributions of the imputed values for each
missing time period. For instance, we can run

> tscsPlot(a.out.time, cs = "Malaysia", main = "Malaysia (with time settings)",

+ var = "tariff", ylim = c(-10, 60))

to get the plot in figure 4.7.4. Here, the black point are observed tariff rates for
Malaysia from 1980 to 2000. The red points are the mean imputation for each of
the missing values, along with their 95% confidence bands. We draw these bands
by imputing each of missing values 100 times to get the imputation distribution for
that observation.
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to get the plot in figure 4.7.4. Here, the black point are observed tariff rates for
Malaysia from 1980 to 2000. The red points are the mean imputation for each of
the missing values, along with their 95% confidence bands. We draw these bands
by imputing each of missing values 100 times to get the imputation distribution for
that observation.

In figure 4.7.4, we can see that the imputed 1990 tariff rate is quite in line with
the values around it. Notice also that values toward the beginning and end of the
time series have higher imputation variance. This occurs because the fit of the
polynomials of time in the imputation model have higher variance at the beginning
and end of the time series. This is intuitive because these points have fewer neighbors
from which to draw predictive power.

A word of caution is in order. As with comparing the histograms of imputed and
observed values, there could be reasons that the missing values are systematically
different than the observed time series. For instance, if there had been a major
financial crisis in Malaysia in 1990 which caused the government to close off trade,
then we would expect that the missing tariff rates should be quite different than
the observed time series. If we have this information in our imputation model, we
might expect to see out-of-line imputations in these time-series plots. If, on the
other hand, we did not have this information, we might see “good” time-series plots
that fail to point out this violation of the MAR assumption. Our imputation model
would produce poor estimates of the missing values since it would be unaware that
both the missingness and the true unobserved tariff rate depend on another variable.
Hence, the tscsPlot is useful for finding obvious problems in imputation model and
comparing the efficiency of various imputation models, but it cannot speak to the
untestable assumption of MAR.

4.7.5 Missingness maps

One useful tool for exploring the missingness in a dataset is a missingness map. This
is a map that visualizes the dataset a grid and colors the grid by missingness status.
The column of the grid are the variables and the rows are the observations, as in
any spreadsheet program. This tool allows for a quick summary of the patterns of
missingness in the data.

If we simply call the missmap function on our output from amelia,

> missmap(a.out)

we get the plot in figure 4.7.5. The missmap function arrange the columns so that
the variables are in decreasing order of missingness from left to right. If the cs

argument was set in the amelia function, the labels for the rows will indicate where
each of the cross-sections begin.

In figure 4.7.5, it is clear that the tariff rate is the variable most missing in the
data and it tends to be missing in blocks of a few observations. Gross international
reserves (intresmi) and financial openness (fivop), on the other hand, are missing
mostly at the end of each cross-section. This suggests missingness by merging,
when variables with different temporal coverages are merged to make one dataset.
Sometimes this kind of missingness is an artifact of the date at which the data was
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merged and researchers can resolve it by finding updated versions of the relevant
variables.

The missingness map is an important tool for understanding the patterns of miss-
ingness in the data and can often indicate potential ways to improve the imputation
model or data collection process.

4.8 Post-imputation Transformations

In many cases, it is useful to create transformations of the imputed varibles for use
in further analysis. For instance, one may want to create an interaction between
two variables or perform a log-transformation on the imputed data. To do this,
Amelia includes a transform function for amelia output that adds or overwrites
variables in each of the imputed datasets. For instance, if we wanted to create a
log-transformation of the gdp.pc variable, we could use the following command:

> a.out <- transform(a.out, lgdp = log(gdp.pc))

> head(a.out$imputations[[1]][,c("country", "year","gdp.pc", "lgdp")])

country year gdp.pc lgdp

1 SriLanka 1981 461.0 6.133

2 SriLanka 1982 473.8 6.161

3 SriLanka 1983 489.2 6.193

4 SriLanka 1984 508.2 6.231

5 SriLanka 1985 525.6 6.264

6 SriLanka 1986 538.9 6.290

To create an interaction between two variables, we could simply use:

> a.out <- transform(a.out, pol_gdp = polity * gdp.pc)

Each transformation is recorded and the summary command prints out each trans-
formation that has been performed:

> summary(a.out)

Amelia output with 5 imputed datasets.

Return code: 1

Message: Normal EM convergence.

Chain Lengths:

--------------

Imputation 1: 16

Imputation 2: 14

Imputation 3: 15

Imputation 4: 21

Imputation 5: 17

Rows after Listwise Deletion: 96
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Rows after Imputation: 171

Patterns of missingness in the data: 8

Fraction Missing for original variables:

-----------------------------------------

Fraction Missing

year 0.00000

country 0.00000

tariff 0.33918

polity 0.01170

pop 0.00000

gdp.pc 0.00000

intresmi 0.07602

signed 0.01754

fiveop 0.10526

usheg 0.00000

lgdp 0.00000

pol_gdp 0.01170

Post-imputation transformed variables:

-----------------------------------------

Transformations

lgdp = log(gdp.pc)

pol_gdp = polity * gdp.pc

Note the updated output is almost exactly the same as the fresh amelia output.
You can pass the transformed output back to amelia and it will add imputations
and update these imputations with the transformations you have performed.

4.9 Analysis Models

Imputation is most often a data processing step as opposed to a final model in of
itself. To this end, it is easy to pass output from amelia to other functions. The
easiest and most integrated way to run an analysis model is to pass the output to
the zelig function from the Zelig package. For example, in Milner and Kubota
(2005), the dependent variable was tariff rates. We can replicate table 5.1 from their
analysis with the original data simply by running

> require(Zelig)

> z.out <- zelig(tariff ~ polity + pop + gdp.pc + year +country, data = freetrade, model = "ls")

> summary(z.out)

Call:

zelig(formula = tariff ~ polity + pop + gdp.pc + year + country,
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model = "ls", data = freetrade)

Residuals:

Min 1Q Median 3Q Max

-30.764 -3.259 0.087 2.598 18.310

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.97e+03 4.02e+02 4.91 3.6e-06

polity -1.37e-01 1.82e-01 -0.75 0.45

pop -2.02e-07 2.54e-08 -7.95 3.2e-12

gdp.pc 6.10e-04 7.44e-04 0.82 0.41

year -8.71e-01 2.08e-01 -4.18 6.4e-05

countryIndonesia -1.82e+02 1.86e+01 -9.82 3.0e-16

countryKorea -2.20e+02 2.08e+01 -10.61 < 2e-16

countryMalaysia -2.25e+02 2.17e+01 -10.34 < 2e-16

countryNepal -2.16e+02 2.25e+01 -9.63 7.7e-16

countryPakistan -1.55e+02 1.98e+01 -7.84 5.6e-12

countryPhilippines -2.04e+02 2.09e+01 -9.77 3.7e-16

countrySriLanka -2.09e+02 2.21e+01 -9.46 1.8e-15

countryThailand -1.96e+02 2.10e+01 -9.36 3.0e-15

Residual standard error: 6.22 on 98 degrees of freedom

Multiple R-squared: 0.925, Adjusted R-squared: 0.915

F-statistic: 100 on 12 and 98 DF, p-value: <2e-16

Running the same model with imputed data is almost identical. Simply replace
the original data set with the imputations from the amelia output:

> z.out.imp <- zelig(tariff ~ polity + pop + gdp.pc + year +country, data =

+ a.out$imputations, model = "ls")

How to cite this model in Zelig:

Kosuke Imai, Gary King, and Oliva Lau. 2007. "ls: Least Squares Regression for Continuous Dependent Variables" in Kosuke Imai, Gary King, and Olivia Lau, "Zelig: Everyone's Statistical Software," http://gking.harvard.edu/zelig

> summary(z.out.imp)

Model: ls

Number of multiply imputed data sets: 5

Combined results:

Call:

zelig(formula = tariff ~ polity + pop + gdp.pc + year + country,

model = "ls", data = a.out$imputations)

Coefficients:
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Value Std. Error t-stat p-value

(Intercept) 2.392e+03 7.394e+02 3.2347 0.004913

polity 4.475e-02 3.681e-01 0.1216 0.904072

pop -8.198e-08 5.643e-08 -1.4528 0.171140

gdp.pc 7.330e-05 1.625e-03 0.0451 0.964523

year -1.137e+00 3.804e-01 -2.9898 0.008001

countryIndonesia -8.541e+01 4.117e+01 -2.0746 0.061959

countryKorea -1.092e+02 4.399e+01 -2.4833 0.026662

countryMalaysia -1.104e+02 4.892e+01 -2.2565 0.045645

countryNepal -1.081e+02 4.769e+01 -2.2663 0.041917

countryPakistan -6.123e+01 4.453e+01 -1.3749 0.196586

countryPhilippines -9.968e+01 4.665e+01 -2.1369 0.055662

countrySriLanka -9.677e+01 5.009e+01 -1.9320 0.080360

countryThailand -9.499e+01 4.520e+01 -2.1018 0.057144

For combined results from datasets i to j, use summary(x, subset = i:j).

For separate results, use print(summary(x), subset = i:j).

Zelig is one way to run analysis models on imputed data, but certainly not the
only way. The imputations list in the amelia output contains each of the imputed
datasets. Thus, users could simply program a loop over the number of imputations
and run the analysis model on each imputed dataset and combine the results using
the rules described in King et al. (2001) and Schafer (1997). Furthermore, users
can easily export their imputations using the write.amelia function as described
in 4.2.1 and use statistical packages other than R for the analysis model.

Amelia also has the ability combine quantities of interest from arbitrary models
using the mi.meld function. This command takes in a matrix with columns for the
quantity and its standard error in each of the imputed datasets. It then uses the
standard rules for combining multiple imputations to create an overall estimated
quantity.

> b.out<-NULL

> se.out<-NULL

> for(i in 1:a.out$m) {

+ ols.out <- lm(tariff ~ polity + pop + gdp.pc, data = a.out$imputations[[i]])

+ b.out <- rbind(b.out, ols.out$coef)

+ se.out <- rbind(se.out, coef(summary(ols.out))[,2])

+ }

> combined.results <- mi.meld(q = b.out, se = se.out)

> combined.results

$q.mi

(Intercept) polity pop gdp.pc

[1,] 31.16 -0.2377 3.474e-08 -0.002371

$se.mi

(Intercept) polity pop gdp.pc

[1,] 2.129 0.3233 6.497e-09 0.0005791
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In addition to the resources available in R, users can draw on Stata to implement
their analysis models. As of version 11, Stata has built-in handling of multiply
imputed datasets. In order to utilize this functionality, simply export the “stacked”
imputations using the write.amelia function:

> write.amelia(a.out, separate = FALSE, file.stem = "outdata", format = "dta")

Once this stacked dataset is open in Stata, you must tell Stata that it is an
imputed dataset using the mi import flong command:

mi import flong, m(imp) id(year country) imp(tariff-usheg)

The command takes a few options: m designates the imputation variable (set with
impvar in write.amelia), id sets the identifying varibles, and imp sets the variables
that were imputed (or included in the imputation). The tariff-usheg indicates that
Stata should treat the range of variables between tariff and usheg as imputed.
Once we have set the dataset as imputed, we can use the built-in mi commands to
analyze the data:

. mi estimate: reg tariff polity pop gdp_pc

Multiple-imputation estimates Imputations = 5

Linear regression Number of obs = 171

Average RVI = 1.4114

Complete DF = 167

DF adjustment: Small sample DF: min = 10.36

avg = 18.81

max = 37.62

Model F test: Equal FMI F( 2, 10.4) = 15.50

Within VCE type: OLS Prob > F = 0.0008

------------------------------------------------------------------------------

tariff | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

polity | -.2058115 .3911049 -0.53 0.610 -1.072968 .6613452

pop | 3.21e-08 8.72e-09 3.68 0.004 1.27e-08 5.14e-08

gdp_pc | -.0027561 .000644 -4.28 0.000 -.0040602 -.0014519

_cons | 32.70461 2.660091 12.29 0.000 27.08917 38.32005

------------------------------------------------------------------------------

4.10 The amelia class

The output from the amelia function is an instance of the S3 class “amelia.” In-
stances of the amelia class contain much more than simply the imputed datasets.
The mu object of the class contains the posterior draws of the means of the complete
data. The covMatrices contains the posterior draws of the covariance matrices of
the complete data. Note that these correspond to the variables as they are sent
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to the EM algorithm. Namely, they refer to the variables after being transformed,
centered and scaled.

The iterHist object is a list of m 3-column matrices. Each row of the matrices
corresponds to an iteration of the EM algorithm. The first column indicates how
many parameters had yet to converge at that iteration. The second column indicates
if the EM algorithm made a step that decreased the number of converged parameters.
The third column indicates whether the covariance matrix at this iteration was
singular. Clearly, the last two columns are meant to indicate when the EM algorithm
enters a problematic part of the parameter space.
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5 AmeliaView Menu Guide

Below is a guide to the AmeliaView menus with references back to the users’s guide.
The same principles from the user’s guide apply to AmeliaView. The only difference
is how you interact with the program. Whether you use the GUI or the command
line versions, the same underlying code is being called, and so you can read the
command line-oriented discussion above even if you intend to use the GUI.

5.1 Loading AmeliaView

The easiest way to load AmeliaView is to open an R session and type the following
two commands:

> library(Amelia)

> AmeliaView()

This will bring up the AmeliaView window on any platform.
On the Windows operating system, there is an alternative way to start AmeliaView

from the Desktop. See section 3.2 for a guide on how to install this version. Once
installed, there should be a Desktop icon for AmeliaView. Simply double-click this
icon and the AmeliaView window should appear. If, for some reason, this approach
does not work, simply open an R session and use the approach above.

5.2 Loading a data set into AmeliaView

AmeliaView load with a welcome screen (Figure 14) that has buttons which can load
a data in many of the common formats. Each of these will bring up a window for
choosing your dataset. Note that these buttons are only a subset of the possible
ways to load data in AmeliaView. Under the File menu (shown in Figure 15), you
will find more options, including the datasets included in the package (africa and
freetrade). You will also find import commands for Comma-Separated Values
(.CSV), Tab-Delimited Text (.TXT), Stata v.5-10 (.DTA), SPSS (.DAT), and SAS
Transport (.XPORT). Note that when using a CSV file, Amelia assumes that your
file has a header (that is, a row at the top of the data indicating the variable names).

You can also load data from an RData file. If the RData file contains more than
one data.frame, a pop-up window will ask to you find the dataset you would like to
load. In the file menu, you can also change the underlying working directory. This
is where AmeliaView will look for data by default and where it will save imputed
datasets.

5.3 Variable dashboard

Once a dataset is loaded, AmeliaView will show the variable dashboard (Figure 16).
In this mode, you will see a table of variables, with the current options for each of
them shown, along with a few summary statistics. You can reorder this table by
any of these columns by clicking on the column headings. This might be helpful to,
say, order the variables by mean or amount of missingness.
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Figure 14: AmeliaView welcome screen.

You can set options for individual variables by the right-click context menu (Fig-
ure 17) or through the Variables menu. For instance, clicking “Set as Time-Series
Variable” will set the currently selected variable in the dashboard as the time-series
variable. Certain options are disabled until other options are enabled. For instance,
you cannot add a lagged variable to the imputation until you have set the time-series
variable. Note that any factor in the data is marked as a ID variable by default,
since a factor cannot be included in the imputation without being set as an ID
variable, a nominal variable, or the cross-section variable. If there is a factor that
fails to meet one of these conditions, a red flag will appear next to the variable name.

1. Set as Time-Series Variable - Sets the currently selected variable to the
time-series variable. Disabled when more than one variable is selected. Once
this is set, you can add lags and leads and add splines of time. The time-series
variable will have a clock icon next to it.

2. Set as Cross-Section Variable - Sets the currently selected variable to
the cross-section variable. Disabled when more than one variable is selected.
Once this is set, you can interact the splines of time with the cross-section.
The cross-section variable will have a person icon next to it.

3. Unset as Time-Series Variable - Removes the time-series status of the
variable. This will remove any lags, leads, or splines of time.
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Figure 15: AmeliaViewFile and import menu.

4. Unset as Cross-Section Variable - Removes the cross-section status of
the variable. This will remove any intersection of the splines of time and the
cross-section.

5. Add Lag/Lead - Adds versions of the selected variables either lagged back
(“lag”) or forward(“lead”). See 4.5.1 above.

6. Remove Lag/Lead - Removes any lags or leads on the selected variables.

7. Plot Histogram of Selected - Plots a histogram of the selected variables.
This command will attempt to put all of the histograms on one page, but if
more than nine histograms are requested, they will appear on multiple pages.

8. Add Transformation... - Adds a transformation setting for the selected
variables. Note that each variable can only have one transformation and the
time-series and cross-section variables cannot be transformed.

9. Remove Transformation - Removes any transformation for the selected
variables.

10. Add or Edit Bounds - Opens a dialog box to set logical bounds for the
selected variable.

5.4 Amelia Options

The Variable menu and the variable dashboard are the place to set variable-level
options, but global options are set in the Options menu.

1. Splines of Time with... - This option, if activated, will have Amelia use
flexible trends of time with the specified number of knots in the imputation.
The higher the number of knots the greater the variation in the trend structure,
yet it will take more degrees of freedom to estimate. For more information see
4.5 above.

2. Interact with Cross-Section? - Include and interaction of the cross-section
with the time trends. This interaction is way of allowing the trend of time to
vary across cases as well. Using a 0-level spline of time and interacting with
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Figure 16: Main variable dashboard in AmeliaView.

the cross section is the equivalent of using a fixed effects. For more information
see 4.5 above.

3. Add Observational Priors... - Brings a dialog window to set prior beliefs
about ranges for individual missing observations. For more information about
observational priors, see 4.6.2.

4. Numerical Options - Brings a dialog window to set the tolerance of the EM
algorithm, the seed of the random number generator, the ridge prior for nu-
merical stability, and the maximum number of redraws for the logical bounds.

5. Draw Missingness Map - Draws a missingness map. See 4.7.5 for more
details on missingness maps.

6. Output File Options - Bring a dialog to set the stub of the prefix of the
imputed data files and the number of imputations. If you set the prefix to
“mydata”, your output files will be mydata1.csv, mydata2.csv... etc.

7. Output File Type - Sets the format of imputed data. If you would like to
not save any output data sets (if you wanted, for instance, to simply look at
diagnostics), set this option to “(no save).” Currently, you can save the output
data as: Comma Separated Values (.CSV), Tab Delimited Text (.TXT), Stata
(.DTA), R save object (.RData), or to hold it in R memory. This last option
will only work if you have called AmeliaView from an R session and want
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Figure 17: Variable options via right-click menu on the variable dashboard.

Figure 18: Options menu.

to return to the R command line to work with the output. Its name in R
workspace will be the file prefix. The stacked version of the Stata output will
work with their built-in mi tools.

5.4.1 Numerical Options

1. Seed - Sets the seed for the random number generator used by Amelia. Useful
if you need to have the same output twice.

2. Tolerance - Adjust the level of tolerance that Amelia uses to check conver-
gence of the EM algorithm. In very large datasets, if your imputation chains
run a long time without converging, increasing the tolerance will allow a lower
threshold to judge convergence and end chains after fewer iterations.

3. Empirical Prior - A prior that adds observations to your data in order to
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Figure 19: Options menu.

shrink the covariances. A useful place to start is around 0.5% of the total
number of observations in the dataset (see 4.6.1).

4. Maximum Resample for Bounds - Amelia fits logical bounds by rejecting
any draws that do not fall within the bounds. This value sets the number of
times Amelia should attempt to resample to fit the bounds before setting the
imputation to the bound.

5.4.2 Add Distribution Prior

Figure 20: Detail for Add Distributional Prior dialog

1. Current Priors - A table of current priors in distributional form, with the
variable and case name. You can remove priors by selecting them and using
the right-click context menu.

2. Case - Select the case name or number you wish to set the prior about. You
can also choose to make the prior for the entire variable, which will set the
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prior for any missing cell in that variable. The case names are generated from
the row name of the observation, the value of the cross-section variable of the
observation and the value of the time series variable of the observation.

3. Variable - The variable associated with the prior you would like specify. The
list provided only shows the missing variables for the currently selected obser-
vation.

4. Mean - The mean value of the prior. The textbox will not accept letters or
out of place punctuation.

5. Standard Deviation - The standard deviation of the prior. The textbox will
only accept positive non-zero values.

5.4.3 Add Range Prior

Figure 21: Detail for Add Range Prior dialog.

1. Case - Select the case name or number you wish to set the prior about. You
can also choose to make the prior for the entire variable, which will set the
prior for any missing cell in that variable. The case names are generated from
the row name of the observation, the value of the cross-section variable of the
observation and the value of the time series variable of the observation.

2. Variable - The variable associated with the prior you would like specify. The
list provided only shows the missing variables for the currently selected obser-
vation.

3. Minimum - The minimum value of the prior. The textbox will not accept
letters or out of place punctuation.
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4. Maximum - The maximum value of the prior. The textbox will not accept
letters or out of place punctuation.

5. Confidence - The confidence level of the prior. This should be between 0 and
1, non-inclusive. This value represents how certain your priors are. This value
cannot be 1, even if you are absolutely certain of a give range. This is used to
convert the range into an appropriate distributional prior.

5.5 Imputing and checking diagnostics

Figure 22: Output log showing Amelia output for a successful imputation.

Once you have set all the relevant options, you can impute your data by clicking
the “Impute!” button in the toolbar. In the bottom right corner of the window,
you will see a progress bar that indicates the progress of the imputations. For large
datasets this could take some time. Once the imputations are complete, you should
see a “Successful Imputation!” message appear where the progress bar was. You can
click on this message to open the folder containing the imputed datasets.

If there was an error during the imputation, the output log will pop-up and give
you the error message along with some information about how to fix the problem.
Once you have fixed the problem, simply click “Impute!” again. Even if there was no
error, you may want to view the output log to see how Amelia ran. To do so, simply
click the “Show Output Log” button. The log also shows the call to the amelia

function in R. You can use this code snippet to run the same imputation from the
R command line.9

9You will have to replace the x argument in the amelia call to the name of you dataset in the
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5.5.1 Diagnostics Dialog

Figure 23: Detail for Diagnostics dialog.

Upon the successful completion of an imputation, the diagnostics menu will be-
come available. Here you can use all of the diagnostics available at the command-line.

1. Compare Plots - This will display the relative densities of the observed (red)
and imputed (black) data. The density of the imputed values are the average
imputations across all of the imputed datasets.

2. Overimpute - This will run Amelia on the full data with one cell of the chosen
variable artificially set to missing and then check the result of that imputation
against the truth. The resulting plot will plot average imputations against true
values along with 90% confidence intervals. These are plotted over a y = x
line for visual inspection of the imputation model.

3. Number of overdispersions - When running the overdispersion diagnostic,
you need to run the imputation algorithm from several overdispersed starting
points in order to get a clear idea of how the chain are converging. Enter the
number of imputations here.

4. Number of dimensions - The overdispersion diagnostic must reduce the
dimensionality of the paths of the imputation algorithm to either one or two
dimensions due to graphical restraints.

5. Overdisperse - Run overdispersion diagnostic to visually inspect the con-
vergence of the Amelia algorithm from multiple start values that are drawn
randomly.

R session.
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5.6 Sessions

It is often useful to save a session of AmeliaView to save time if you have impute
the same data again. Using the Save Session button will do just that, saving all
of the current settings (including the original and any imputed data) to an RData
file. You can then reload your session, on the same computer or any other, simply
by clicking the Load Session button and finding the relevant RData file. All of the
settings will be restored, including any completed imputations. Thus, if you save
the session after imputing, you can always load up those imputations and view their
diagnostics using the sessions feature of AmeliaView.
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6 Reference to Amelia’s Functions
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