
Amelia II: A Program for Missing Data

James Honaker, Gary King, and Matthew Blackwell

January 15, 2007

Contents

1 Introduction 3

2 What Amelia Does 4

3 Versions of Amelia 5

4 Installation and Updates 5
4.1 Windows — AmeliaView . 5
4.2 Windows — Amelia II for R . 5
4.3 Linux . 6

5 Program Overview 6
5.1 AmeliaView . 6
5.2 Amelia for R . 7

6 Data Input and Output 7
6.1 AmeliaView . 7
6.2 Amelia for R . 8

7 Options 9
7.1 Screen Output . 9
7.2 Transformations of Variables . 9

7.2.1 Ordinal . 10
7.2.2 Nominal . 10
7.2.3 Natural Log . 11
7.2.4 Square Root . 11
7.2.5 Logistic . 11

7.3 Identification Variables . 11
7.4 Time Series, or Time Series Cross Sectional Data 12

8 Setting Priors 13
8.1 Empirical (Ridge) Priors for High Missingness, Small n’s, or Large

Correlations . 13
8.2 Observation-level priors . 13

9 Diagnostics 14
9.1 Compare . 14
9.2 Overimpute . 15
9.3 Overdispersed Starting Values . 18

10 Sessions 19

11 Error Checking and Reference Guide 22
11.1 Error Code Reference . 22

1

12 Command Line Argument Reference 24
12.1 amelia: Multiple Imputation of Incomplete Data 24

13 AmeliaView Menu Guide 28
13.1 Step 1 - Input . 28
13.2 Step 2 - Options . 28

13.2.1 Variables Dialog . 29
13.2.2 Time Series Cross Sectional Dialog 30
13.2.3 Priors Dialog . 31
13.2.4 Case Priors . 31
13.2.5 Observational Priors . 32
13.2.6 Add Distribution Prior . 33
13.2.7 Add Range Prior . 33

13.3 Step 3 - Output . 34
13.3.1 Diagnostics Dialog . 35

2

1 Introduction

This manual presents a brief introduction to the Amelia II software package for
multiple imputation. Amelia II allows users to appropriately impute (“fill in”
or rectangularize) incomplete data sets so that analyses which require complete
observations can use all the information present in a dataset with missingness, and
avoid the biases and inefficiencies that can result from dropping all partially observed
observations from the analysis.

James Honaker, Anne Joseph, Gary King, Kenneth Scheve, and Naunihal Singh
(1998) wrote the first version of Amelia to remedy the discrepancy between the way
social scientists then analyzed data with missing values and the recommendations of
the statistics community. With a few notable exceptions, statisticians and method-
ologists had agreed on the advantages of the concept of “multiple imputation” as a
general-purpose approach to data with missing values; yet at the time most social
scientists had still used listwise deletion (deleting all observations with at least one
missing cell) or other ad hoc techniques like best guess or mean imputation to make
inferences in the presence of missing data. These practices are known to be inefficient
and often biased. Unfortunately, many of the multiple imputation algorithms that
had been proposed in the literature were unfit for handling the common problems
of social science data and were often difficult to use, even for experts.

A key reason multiple imputation had not been used frequently in the social
sciences is because it was developed so that producers of large public-use data sets
could conduct the imputation for the analyst, but this paradigm did not help those
who collected, merged, or processed their own data. Before King, Honaker, Joseph
and Scheve (2001), a small number of public use data sets had been imputed, but
very few researchers had imputed a data set or used a multiply imputed data set.
The contribution of the work that led to the first version of Amelia was the EMis
algorithm that produced imputations requiring less expertise to use and with more
speed than existing MCMC-based algorithms. This made it possible to write Amelia
so that scholars could impute their own data, rather than waiting for others to do
it for them.

The Amelia II program goes several significant steps beyond the capabilities
of the first version of Amelia. For one, the bootstrapping-based EMB algorithm
included in Amelia II can impute many more variables, with many more observa-
tions, in much less time. The great simplicity and power of the EMB algorithm
made it possible to write Amelia II so that it virtually never crashes — which to
our knowledge makes it unique among all existing multiple imputation software.

Amelia II also has features to make valid and much more accurate imputa-
tions for cross-sectional, time-series, and time-series-cross-section data, and allows
the incorporation of observation and data-matrix-cell level prior information. This
software implements the ideas developed in Honaker and King (2006). Please read
this paper in conjunction with this manual.

3

2 What Amelia Does

Multiple imputation involves imputing m values for each missing cell in your data
matrix and creating m “completed” data sets. (Across these completed data sets,
the observed values are the same, but the missing values are filled in with different
imputations that reflect the uncertainty about the missing data.) After imputation
with Amelia II ’s EMB algorithm, you can apply whatever statistical method you
would have used if there had been no missing values to each of the m data sets, and
use a simple procedure, described in the next paragraph, to combine the results.
(You can combine the results automatically by doing your data analyses within
Zelig, or within Clarify for Stata; see http://gking.harvard.edu/stats.shtml.)
Under normal circumstances, you only need to impute once and can then analyze
the m imputed data sets as many times and for as many purposes as you wish.
The advantage of Amelia II is that it combines the comparative speed and ease-
of-use of our algorithm with the power of multiple imputation, to let you focus on
your substantive research questions rather than spending time developing complex
application-specific models for nonresponse in each new data set. Unless the rate of
missingness is very high, m = 5 (the program default) is probably adequate.

In order to combine the results across m data sets, first decide on the quantity
of interest to compute, such as univariate mean, regression coefficient, predicted
probability, or first difference. Then, the easiest way is to draw 1/m simulations of q
from each of the m data sets, combine them into one set of m simulations, and then
to use the standard simulation-based methods of interpretation common for single
data sets (King, Tomz and Wittenberg, 2000).

Alternatively, you can combine directly and use as the multiple imputation esti-
mate of this parameter, q̄, the average of the m separate estimates, qj (j = 1, ...,m):

q̄ =
1

m

m∑
j=1

qj. (1)

The variance of the point estimate is the average of the estimated variances from
within each completed data set, plus the sample variance in the point estimates
across the data sets (multiplied by a factor that corrects for the bias because m <
∞). Let SE(qj)

2 denote the estimated variance (squared standard error) of qj from
the data set j, and S2

q = Σm
j=1(qj − q̄)2/(m − 1) be the sample variance across the

m point estimates. The standard error of the multiple imputation point estimate is
the square root of

SE(q)2 =
1

m

m∑
j=1

SE(qj)
2 + S2

q (1 + 1/m). (2)

Users should see especially Pp. 57-58 of King et al. (2001) for a variety of
practical suggestions in making imputations, such as what variables to include in
the imputation stage, how to keep imputations within logically possible ranges, etc.

4

http://gking.harvard.edu/stats.shtml

3 Versions of Amelia

Two versions of Amelia II are available, each with its own advantages and draw-
backs. First, Amelia II exists as a package, or collection of functions, for the R
statistical software package. Users can utilize their knowledge of the R language to
run Amelia II at the command line or to create scripts that will run Amelia II and
preserve the commands for future use. Alternatively, AmeliaView, an interactive
Graphical User Interface (GUI), allows users to set options and run Amelia without
any knowledge of the R programming language. AmeliaView enables users to set
all of the Amelia II options available and enables those with limited or no coding
experience to create expert level imputations without knowledge of the R language.

Both versions of Amelia II are available on the Windows and Linux platforms
and Amelia II for R runs in any environment that R can. All versions of Amelia
require the R software, which is freely available at http://www.r-project.org/.

4 Installation and Updates

Before installing Amelia II , you must have installed R version 2.1.0 or higher,
which is freely available at http://www.r-project.org/.

4.1 Windows — AmeliaView

To install AmeliaView in the Windows environment, simply download the installer
setup.exe from http://gking.harvard.edu/amelia/ and run it. The installer
will ask you to choose a location to install Amelia II . If you have installed R
with the default options, Amelia II will automatically find the location of R. If the
installer cannot find R, it will ask you to locate the directory of the most current
version of R. Make sure you choose the directory name that includes the version
number of R (e.g. C:/Program Files/R/R-2.4.0) and contains a subdirectory named
bin. The installer will also put shortcuts on your Desktop and Start Menu.

4.2 Windows — Amelia II for R

Users familiar with the R language, and who intend to use Amelia primarily as a
function within other R code can install all the Amelia functions as one would install
any other R library. A package install can be called within R by:

> install.packages("Amelia",repos="http://gking.harvard.edu")

While Amelia works in builds of R beyond version 2.1.0, the online package install
will only be available for the most recent version of R, currently, 2.4.0.

Even users familiar with the R language may find it useful to utilize Ameli-
aView to set options on variables, change arguments, or run diagnostics. From the
command line, AmeliaView can be brought up with the call:

> AmeliaView()

5

http://www.r-project.org/
http://www.r-project.org/
http://gking.harvard.edu/amelia/

4.3 Linux

To install Amelia in a Linux OS, you must install the Amelia library into your
version of R. This is true even if users only wish to use AmeliaView. Download the
package from http://gking.harvard.edu/amelia. Then, in the same directory as
the file, at the Linux/Unix command line type

> R CMD INSTALL --library=.R/library amelia_1.0.tar.gz .

If you do not have access to the root, you can install the package locally. Create a
directory (i.e. myrlibrary) to be the local storage space for R packages. Once this
directory is created you can install the package to that local library:

> R CMD INSTALL --library=~/myrlibrary amelia_1.0.tar.gz .

Once this is complete you need to edit or create your R profile. Locate or create
/.Rprofile in your home directory and add this line:

.libPath(‘‘~/myrlibrary’’)

This will add your local library to the list of library paths that R searches in when
you load libraries.

Linux users can use AmeliaView in the same way as Windows users of Amelia
for R. From the command line, AmeliaView can be brought up with the call:

> AmeliaView()

5 Program Overview

5.1 AmeliaView

Built around the core of the R library, AmeliaView has a graphical interface for users
to input data, set options, create the imputed data sets, and run diagnostics. The
structure of the program moves logically through these steps. In Windows, this can
be accessed from the desktop shortcut created by the installer. In Linux, accessing
the GUI requires calling a function from within R1. Once AmeliaView is open, no
direct use of R is required.

The main window of AmeliaView is divided into three steps. In Step 1, you
indicate the location of your data and load it into the program. In Step 2, you can
specify options about your data by using the Options dialogs. In Step 3, you can
configure the output of Amelia and execute the Amelia code. You have the option
to save your output data files for further use.

In most simple applications, all you will need to do is load an input data file, set
any options you desire, and hit the “Run Amelia” button. For example:

1AmeliaView can be called from within R in Windows, as well, using the AmeliaView() function.

6

http://gking.harvard.edu/amelia

1. Specify the type of data file you wish to input by using the “Input Data Type”
drop-down menu. Next, use the “Browse...” button to find the location of your
data file. Once this is specified, you can hit the “Load Data” button to load the
data. If your data loads correctly, the status bar at the bottom of the program
will show the filename, number of rows and number of columns. At this point
you can use the “Summarize Data” button to view summary statistics about
the variables along with histogram plots of them.

2. In the Options step, you can specify the time series and cross sectional variables
in your data set (if any) by using the appropriate drop-down menus. Each of
the “Variables”, “TSCS”, and “Priors” buttons open a separate dialog box in
which you can set options in each of these categories.

3. In the Output step, you can specify what file type (if any) in which you would
like to save your output data. You can also set the name of the output data and
the number of data sets you would like. You can now run Amelia by pressing
the “Run Amelia” button. A dialog will open that tracks the progress of
Amelia and will let you know when it has finished. Once this is complete, you
can either use the diagnostics or close Amelia.

5.2 Amelia for R

Using Amelia in R you will first have to load the library into R using the library(Amelia)
command. Once the package is loaded, you can set options using the arguments of
the amelia() function. The output data will be either a list of m data frames
or matrices depending on your input data. Please refer to the end of this manual
for detailed documentation on adjusting the optional arguments from their default
values.

6 Data Input and Output

6.1 AmeliaView

AmeliaView uses the foreign package in R to import and export various types of
files. In the Input box, you can choose the file type you wish to use from the group
of supported file types: Comma Separated Values (.csv), Tab-Delimited (.txt), Stata
(.dta), SPSS (.dat), and SAS Transport (.xport). Once this is set, you can proceed
to locate your file in one of two ways. You can type the location of the file in the
“Input Data File” entry and press the “Load Data” button. Or you can locate your
file by using the “Browse...” button to select the file of your choice. Once you have
entered the file name, press the “Load Data” button to load the file into Amelia.

When you have loaded the data, you can use the “Summarize Data” button to
see the data. This includes seeing the minimum and maximum values along with
the mean and standard deviation. Another feature is the ability to view a plot of

7

the histogram of each individual variable. This can help you get a graphical sense
of the observed values in your dataset.

Fewer options exist for the output data files due to the limitations of the foreign
package. You can only save the imputed datasets as either a CSV, Tab-Delimited,
or Stata file. However, most statistical packages will allow you to read in datasets
as either CSV or Tab-delimited. The names of the files will be the name you spec-
ify, plus a number appended at the end to distinguish between successive imputed
datasets. For example, if you set the name to be “mydata” and the output file type
to be CSV, your files would be:

mydata1.csv

mydata2.csv

...

There will be as many datasets as you indicate in the output options box.
Another output file that is produced when running Amelia is the Replication

Archive. This file can be used to reproduce the same set of options you ran Amelia
with so that you or anyone else can replicate the same findings. This file automat-
ically saves to amarchive.r. (If, as is becoming standard practice, you create and
archive replication data sets to accompany your papers (King, 1995), you should in-
clude this file.) This file can also serve as a session save that can be opened later to
load the same options that you ran Amelia under. This allows you to pick up where
you left off in the next run of Amelia, adjust options and rerun the imputations, or
return at a later point and use the diagnostic routines.

6.2 Amelia for R

Data input in the command-line version of Amelia for R is identical to any data input
in R. You must have your data in either a text format such as Comma Separated
Values (.csv) or Tab-Delimited (.txt) and then read them into R (generally this
would involve the functions read.csv or read.table, respectively). You can read
about the specifics of how to load data into R in the R documentation or in Zelig
(http://gking.harvard.edu/zelig). Of course your data may be generated by
code and amelia called as a function later in that code.

Besides various commercial packages to transfer your data between formats, a
viable option is using the foreign package. This package can greatly expand the
number of different formats that R can input, including Stata, SPSS, and SAS
transport.

Whichever way you get your data into R, when passing it to the amelia function,
it can either be in the form of a data frame or matrix. After Amelia has run, you
will get datasets returned in the same type as the format of the dataset given to the
amelia function. Once you have these datasets, you can manipulate them in R or
save them to files using the R function write.

For example, a simple session or code fragment might be:

> library(amelia)

> x<-read.table("mydata.csv")

8

http://gking.harvard.edu/zelig

> output<-amelia(data=x,empri=10,ords=c(3,4))

> save(output,file="output.rData")

where ords and empri are options detailed later in this manual.

7 Options

There are a variety of options in Amelia that customize the imputation model to
handle problems that are common in social science data. In AmeliaView, these
options are set using the dialog boxes “Variables,” “TSCS,” and “Priors.” At these
dialogs, the user can visually inspect and set each option. Please refer to the Menu
Guide below for details on the content of the dialogs.

In Amelia for R, these options must be set on the command line. From within
R, users can set the transformations by including a vector of column numbers or
names (if column names exist), that Amelia should transform. For example,

> amelia(mydata, noms=c(2,3,7))

or

> amelia(mydata, logs=c(‘‘gdp’’,‘‘population’’))

7.1 Screen Output

The output of the imputation model in the AmeliaView program appears in a new
window. It lists stages of the imputation model, including the number of iterations
of the EM chain necessary in each of the bootstraps.

Screen output in the R command level can be adjusted with the “print to screen”
argument, p2s. At a value of 0, no screen printing will occur. This may be useful
in large jobs or simulations where a very large number of imputation models may
be required. The default value of 1, lists each bootstrap, and displays the number
of iterations required to reach convergence in that bootstrapped dataset. The value
of 2 gives more thorough screen output, including, at each iteration, the number
of parameters that have significantly changed since the last iteration. This may
beuseful when the EM chain length is very long, as it can provide an intuition for
many parameters still need to converge in the EM chain, and a sense of the time
remaining. However, it is worth noting that the last several parameters can often
take a significant fraction of the total number of iterations to converge. Setting p2s

to 2 will also generate information on how EM algorithm is behaving, such as a ’!’

when the current estimated complete data covariance matrix is not invertible and a
’*’ when the likelihood has not monotonically increased in that step.

7.2 Transformations of Variables

Social science data commonly includes variables that fail to fit to a multivariate
normal distribution. Indeed, numerous models have been introduced specifically to

9

deal with the problems they present. As it turns out, much evidence in the literature
(discussed in King et al. 2001) indicates that the multivariate normal model used
in Amelia usually works well for the imputation stage even when discrete or non-
normal variables are included and when the analysis stage involves these limited
dependent variable models. Nevertheless, Amelia includes some limited capacity to
deal directly with ordinal and nominal variables and to variables that require other
transformations. In general nominal and log transform variables must be declared
to Amelia , whereas ordinal (including dichotomous) variables often need not be, as
described below. (For harder cases, see (Schafer, 1997), for specialized MCMC-based
imputation models for discrete variables.)

Although these transformations are taken internally on these variables to better
fit the data to the multivariate normal assumptions of the imputation model, all the
imputations that are created will be returned in the original untransformed form of
the data (If the user has already performed transformations on their data (such as
taking a log or square root) these do not need to be declared, as that would result in
the transformation occurring doubly in the imputation model). The fully imputed
datasets that are returned will always be in the form of the original data that is
passed to the amelia routine.

7.2.1 Ordinal

In much statistical research, researchers treat independent ordinal (including di-
chotomous) variables as if they were really continuous. If the analysis model to be
employed is of this type, then nothing extra is required of the of the imputation
model. Users are advised to allow Amelia to impute non-integer values for any
missing data, and to use these non-integer values in their analysis. Sometimes this
makes sense, and sometimes this defies intuition. One particular imputation of 2.35
for a missing value on a seven point scale carries the intuition that the respondent is
between a 2 and a 3 and most probably would have responded 2 had the data been
observed. This is easier to accept than an imputation of 0.79 for a dichotomous
variable where a zero represents a male and a one represents a female respondent.
However, in both cases the non-integer imputations carry more information about
the underlying distribution than would be carried if we were to force the imputa-
tions to be integers. Thus whenever the analysis model permits, missing ordinal
observations should be allowed to take on continuously valued imputations.

Often, however, analysis models require some variables to be strictly ordinal, as
for example the dependent variable must be in a logistical regression. Imputations
for variables set as ordinal are created by taking the continuously valued imputation
and using an appropriately scaled version of this as the probability of success in a
binomial distribution. The draw from this binomial distribution is then translated
back into one of the ordinal categories.

7.2.2 Nominal

Nominal variables (other than dichotomous) must be treated quite differently than
ordinal variables. Any multinomial variables in the data set (such as religion coded
1 for Catholic, 2 for Jewish, and 3 for Protestant) must be specified to Amelia.

10

For a p-category multinomial variable, Amelia will determine p (as long as your
data contain at least one value in each category), and substitute p− 1 binary vari-
ables to specify each possible category. These new p − 1 variables will be treated
as the other variables in the multivariate normal imputation method chosen, and
receive continuous imputations. These continuously valued imputations will then be
appropriately scaled into probabilities for each of the p possible categories, and one
of these categories will be drawn, where upon the original p-category multinomial
variable will be reconstructed and returned to the user. Thus all imputations will
be appropriately multinomial.

Since Amelia properly treats a p-category multinomial variable as p−1 variables,
one should understand the number of parameters that are quickly accumulating if
many multinomial variables are being used. If the square of the number of real
and constructed variables is large relative to the number of observations, the user is
recommended to implement a ridge prior distribution on the parameter space.

7.2.3 Natural Log

If one of your variables is heavily skewed or has outliers that may alter the imputation
in an unwanted way, you can use a natural logarithm transformation of that variable
in order to normalize its distribution. This transformed distribution helps Amelia
to avoid imputing values that depend too heavily on outlying data points. Log
transformations are common in expenditure and economic variables where we have
strong beliefs that the marginal relationship between two variables decreases as we
move across the range.

7.2.4 Square Root

Event count data is often heavily skewed and has nonlinear relationships with other
variables. One common transformation to tailor the linear model to count data is
to take the square roots of the counts. This is a transformation that can be set as
an option in amelia.

7.2.5 Logistic

Proportional data is sharply bounded between 0 and 1. A logistic transformation
is one possible option in amelia to make the distribution symmetric and relatively
unbounded.

7.3 Identification Variables

Datasets often contain identification variables, such as country names, respondent
numbers, or other id numbers, codes or abbreviations. Sometimes these are text and
sometimes these are numeric. Often it is not appropriate to include these variables in
the imputation model, but it is useful to have them remain in the imputed datasets
(However, there are models that would include the ID variables in the imputation
model, such as fixed effects model for data with repeated observations of the same
countries). Identification variables which are not to be included in the imputation

11

model can be identified with the argument idvars. These variables will not be used
in the imputation model, but will be kept in the imputed datasets.

In order to conserve memory, it is wise to remove unnecessary variables from a
data set before loading it into Amelia. The only variables you should include in
your data when running Amelia are variables you will use in the analysis stage and
those variables that will help in the imputation model. While it may be tempting
to simply mark unneeded variables as IDs, it only serves to waste memory and slow
down the imputation procedure.

7.4 Time Series, or Time Series Cross Sectional Data

Many variables that are recorded over time within a cross-sectional unit are observed
to vary smoothly over time. In such cases, knowing the observed values of obser-
vations close in time to any missing value may enormously aid the imputation of
that value. However, the exact pattern may vary over time within any cross-section.
There may be periods of growth, stability, or decline; in each of which the observed
values would be used in a different fashion to impute missing values. Also, these
patterns may vary enormously across different cross-sections, or may exist in some
and not others. Amelia can build a general model of patterns within variables across
time by creating a sequence of polynomials of the time index. If, for example, GDP
varies smoothly over time, then we make the modeling assumption that there exists
some polynomial that describes the economy in cross-sectional unit i at time t as:

GDP(t)i = β0 + β1t + β1t
2 + β1t

3 . . . (3)

And thus if we include enough higher order terms of time then the pattern between
observed values of GDP can be estimated. Amelia will create polynomials of time
up to the user defined k-th order, (k ≤ 3). If cross-sectional units are specified
these polynomials can be interacted with the cross-section unit (this is the default)
to allow the patterns over time to vary between cross-sectional units. Unless you
strongly believe all units have the same patterns over time in all variables (including
the same constant term), this is a reasonable default. When k is set to 0, this
interaction simply results in a model of fixed effects where every unit has a uniquely
estimated constant term. Amelia II does not smooth the observed data, and only
uses this functional form, or one you choose, with all the other variables in the
analysis and the uncertainty of the prediction, to impute the missing values.

In AmeliaView, the TSCS settings can be adjusted in the Time Series Cross-
Sectional Dialog (discussed in section 13.2.2 of this manual). At the R command
line, these options can be set as:

> amelia(mydata, ts=1, cs=2, polytime=2, intercs=TRUE)

Where ts and cs give the locations of the time and cross-section indicators (often
country names and years, respectively), polytime is an integer between 0 and 3
inclusive, that sets the order of polynomials to use, and intercs defines whether
these polynomials should be interacted with the cross-sectional unit.

12

8 Setting Priors

Amelia has a number of methods of setting priors within the imputation model.
Two of these are commonly used and discussed below, empirical or ridge priors and
observational priors.

8.1 Empirical (Ridge) Priors for High Missingness, Small
n ’s, or Large Correlations

When the data to be analyzed contain a high degree of missingness or very strong
correlations among the variables, or when the number of observations is only slightly
greater than the number of parameters p(p + 3)/2 (where p is the number of vari-
ables), results from your analysis model will be more dependent on the choice of
imputation model. This suggests more testing in these cases of alternative specifi-
cations under Amelia.

In these circumstances, we recommend adding a ridge prior which will help with
numerical stability by shrinking the covariances among the variables toward zero
without changing the means or variances. The ridge prior can be implemented
by setting the option empri in R and the Ridge Prior entry under the “Priors”
button in the standalone. Including this prior as a positive number is roughly
equivalent to adding empri artificial observations to the data set with the same
means and variances as the existing data but with zero covariances. Thus, increasing
the empri setting results in more shrinkage of the covariances, thus putting more a
priori structure on the estimation problem: like many Bayesian methods, it reduces
variance in return for an increase in bias that one hopes does not overwhelm the
advantages in efficiency. In general, we suggest keeping the value on this prior
relatively small and increase it only when necessary. A recommendation of 0.5 to 1
percent of the number of observations, n, is a reasonable starting value, and often
useful in large datasets to add some numerical stability. For example, in a dataset
of two thousand observations, this would translate to a prior value of 10 or 20
respectively. A prior of up to 5 percent is moderate in most applications.

8.2 Observation-level priors

Researchers often have additional prior information about missing data values based
on previous research, academic consensus, or personal experience. Amelia can in-
corporate this information to produce vastly improved imputations. The Amelia
algorithm allows users to include informative Bayesian priors about individual miss-
ing data cells instead of the more general model parameters, many of which have
little direct meaning.

The incorporation of priors follows basic Bayesian analysis where the imputation
turns out to be a weighted average of the model-based imputation and the prior
mean, where the weights are functions of the relative strength of the data and prior:
when the model predicts very well, the imputation will down-weight the prior, and
vice versa (Honaker and King, 2006).

13

The priors about individual observations should describe the analyst’s belief
about the distribution of the missing data cell. This can either take the form of
a mean and a standard deviation or a confidence interval. For instance, we might
know that GDP growth for Ghana in a given year was somewhere around 3.5%,
but we have some uncertainty as to the exact value. Our prior belief about the
distribution of the missing data cell, then, centers on 3.5 with a standard deviation
that reflects the amount of uncertainty we have about our prior belief.

In AmeliaView, the observational priors dialog will guide you through adding
priors to the imputation. Refer to section 13.2.5 for further details on how to add
priors in AmeliaView.

Alternatively, in R, you must build a priors matrix with either four or five
columns. Each row of the matrix represents a prior on either one observation or
one variable. In any row, the entry in the first column is the row of the observation
and the entry is the second column is the column of the observation. In the four
column priors matrix the third and fourth columns are the mean and standard de-
viation of the prior distribution of the missing value. For example, in the following
example the first row constructs a prior mean of 500 with a standard deviation of
50 on the missing cell in row 42, column 3:

> priors

row column mean std dev

[1,] 42 3 500 50

[2,] 46 2 1 3

[3,] 0 2 0 1

In the five column matrix, the last three columns describe a confidence range of
the data. The columns are a lower bound, an upper bound, and a confidence level
between 0 and 1, exclusive. Whichever format you choose, it must be consistent
across the entire matrix. The last prior created in the example above specifies a row
number of 0. This indicates that the prior created should be applied to all missing
values in this variable (here variable 2), unless another prior is specifically created
for that observation (as in observation 46 in this example).

9 Diagnostics

Amelia currently provides three diagnostic tools to inspect the imputations that
are created. These routines compare, overimpute and overdisperse graphically
investigate the distribution of the imputations, the fit of the imputation model, and
modality of the Likelihood space optimized by the EM chain, respectively.

9.1 Compare

In the diagnostic window of AmeliaView, the compare function will, for a given
variable, generate a plot of the relative frequencies of the observed data with an
overlay of the relative frequency of the imputed values. The imputed curve plots
the density of the mean imputation over the m datasets. That is, for each cell that

14

is missing in the variable the diagnostic will find the mean of that cell in each of the
m datasets and use that value for the density plot. These graphs will allow you to
inspect how the density of imputations compares to the density of observed data.
Some discussion of these graphs can be found in Abayomi, Gelman and Levy (2005).
Minimally, these graphs can be used to check that the mean imputation falls within
known bounds, when such bounds exist in certain variables or settings.

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Observed and Imputed values of

re
la

tiv
e

de
ns

ity

Mean Imputations
Observed Values

−2 0 2 4 6 8
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5

Observed and Imputed values of

re
la

tiv
e

de
ns

ity

Mean Imputations
Observed Values

Figure 1: Two examples of the compare diagnostic graph. In the left graph all the
imputations, the density of which is shown in black, are contained within the range
of the observed data for this variable (in red). In the right graph some of the mean
imputed values are larger than the largest observed value. This may be reasonable
(if for example, high income respondents to a survey do not report their income)
or may be a warning to change the imputation model, if for example the data has
strong bounds and these imputations fall well outside these bounds.

This graph can also be called from R as:

> output<-amelia(data=x)

> compare.density(data=x,output=output,var=3)

where var is the column number (or the name) of the variable you would like to
produce the graph for.

9.2 Overimpute

Overimputing is a technique we have developed to judge the fit of the imputation
model. Because of the nature of the missing data mechanism, it is impossible to
tell whether the mean prediction of the imputation model is close to the unobserved

15

value that is trying to be recovered. By definition this missing data does not exist
to create this comparison, and if it existed we would no longer need the imputations
or care about their accuracy. However, a natural question the applied researcher
will often ask is how accurate are these imputed values?

Overimputing involves sequentially treating each of the observed values as if
they had actually been missing. For each observed value in turn we then generate
several hundred imputed values of that observed value, as if it had been missing.
While m = 5 imputations are sufficient for most analysis models, this large number
of imputations allows us to construct a confidence interval of what the imputed
value would have been, had any of the observed data been missing. We can then
graphically inspect whether our observed data tends to fall within the region where
it would have been imputed had it been missing.

Our overimputation diagnostic runs this procedure through all of the observed
values for a user selected variable. We can graph the estimates of each observation
against the true values of the observation. On this graph, a y = x line indicates the
line of perfect agreement; that is, if the imputation model was a perfect predictor
of the true value, all the imputations would fall on this line. For each observation,
Amelia also plots 90% confidence intervals that allows the user to visually inspect
the behavior of the imputation model. By checking how many of the confidence
intervals cover the y = x line, we can tell how often the imputation model can
confidently predict the true value of the observation.

Occasionally, the overimputation can display unintuitive results. For example,
different observations may have different numbers of observed covariates. If covari-
ates that are useful to the prediction are themselves missing, then the confidence
interval for this observation will be much larger. In the extreme, there may be ob-
servations where the observed value we are trying to overimpute is the only observed
value in that observation, and thus there is nothing left to impute that observation
with when we pretend that it is missing, other than the mean and variance of that
variable. In these cases, we should correctly expect the confidence interval to be
very large.

An example of this graph is shown in figure 2. In this simulated bivariate dataset,
one variable is overimputed and the results displayed. The second variable is either
observed, in which case the confidence intervals are very small and the imputations
(yellow) are very accurate, or the second variable is missing in which case this
variable is being imputed simply from the mean and variance parameters, and the
imputations (red) have a very large and encompassing spread. The circles represent
the mean of all the imputations for that value. As the amount of missing information
in a particular pattern of missingness increases, we expect the width of the confidence
interval to increase. The color of the confidence interval reflects the percent of
covariates observed in that pattern of missingness, as reflected in the legend at the
bottom.

This graph can also be called from R as:

> output<-amelia(data=x)

> overimpute(data=x,output=output,var=3)

where var is the column number (or the name) of the variable you would like to

16

0.0 0.2 0.4 0.6 0.8 1.0

−0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Observed versus Imputed Values

Observed values

Im
pu

te
d

va
lu

es

 0−.2 .2−.4 .4−.6 .6−.8 .8−1

Figure 2: An example of the overimpute diagnostic graph. Here ninety percent
confidence intervals are constructed that detail where an observed value would have
been imputed had it been missing from the dataset, given the imputation model.
The dots represent the mean imputation. Around ninety percent of these confidence
intervals contain the y = x line, which means that the true observed value falls
within this range. The color of the line (as coded in the legend) represents the
fraction of missing observations in the pattern of missingness for that observation.
The yellow lines have more information (observed covariates) from which to impute
the variable, and thus much tighter bounds.

17

produce the graph for.

9.3 Overdispersed Starting Values

If the data given to Amelia has a poorly behaved likelihood, the EM algorithm
can have problems finding a global maximum of the likelihood surface and starting
values can begin to effect imputations. Because the EM algorithm is deterministic,
the point in the parameter space where you start it can impact where it ends, though
this is irrelevant when the likelihood has only one mode. However, if the starting
values of an EM chain are close to a local maximum, the algorithm may find this
maximum, unaware that there is a global maximum farther away. To make sure that
our imputations do not depend on our starting values, a good test is to run the EM
algorithm from multiple, dispersed starting values and check their convergence. In a
well behaved likelihood, we will see all of these chains converging to the same value,
and reasonably conclude that this is the likely global maximum. On the other hand,
we might see our EM chain converging to multiple locations. The algorithm may also
wander around portions of the parameter space that are not fully identified, such as
a ridge of equal likelihood, as would happen for example, if the same variablewere
accidentally included in the imputation model twice.

Amelia includes a diagnostic to run the EM chain from multiple starting values
that are overdispersed from the estimated maximum. The overdispersion diagnostic
will display a graph of the paths of each chain. Since these chains move through
spaces that are in an extremely high number of dimensions and can not be graphically
displayed, the diagnostic reduces the dimensionality of the EM paths by showing
the paths relative to the largest principle components of the final mode(s) that are
reached. Users can choose between graphing the movement over the two largest
principal components, or more simply the largest dimension with time (iteration
number) on the x-axis. The number of EM chains can also be adjusted. Once the
diagnostic draws the graph, the user can visually inspect the results to check that
all chains convergence to the same point.

In one dimension, the diagnostic plots movement of the chain on the y-axis and
time, in the form of the iteration number, on the x-axis. Figures 9.3 and 9.3 show
two examples of one dimensional plots. The first shows a well behaved likelihood,
as the starting values all converge to the same point. The black horizontal line is
the point where Amelia converges when it uses the default method for choosing the
starting values. The diagnostic takes the end point of this chain as the possible
maximum and disperses the starting values away from it to see if the chain will
ever finish at another mode. Figure 9.3 shows an example of how a diagnostic plot
will look on a problematic likelihood surface. A few of the iterations are ending up
in vastly different location in the parameter space. This can happen for a variety
of reasons. In this example it is a result of having two highly collinear variables
included in the imputation model. More generally, an unidentified imputation model
will lead to non-unique ML estimates (see King (1989) for a more detailed discussion
of identification and likelihoods).

This graph can also be called from R as:

> output<-amelia(data=x)

18

0 5 10 15 20 25 30

0.
85

0.
90

0.
95

1.
00

1.
05

Overdispersed Start Values

Number of Iterations

La
rg

es
t P

rin
cip

le
 C

om
po

ne
nt

Convergence of original starting values

Figure 3: A plot from the overdispersion diagnostic where all EM chains are converg-
ing to the same mode, regardless of starting value. The y-axis represents movement
in the (very high dimensional) parameter space, and the x-axis represents the iter-
ation number of the chain.

> disperse(data=x,output=output,m=5,dims=1)

where dims can be set to a value of either 1 (default) or 2, for one dimensional and
two dimensional graphs, respectively. The argument m sets the number of EM chains
to run to create the graph. In R this routine can also be called before anAmelia run
has taken place, in which case output need not be declared, but any other Amelia
options may be set in the same way they would be declared for the amelia function.
This allows you to check the likelihood surface before running the amelia function.

10 Sessions

Setting options for some large datasets may take some time, especially with the
presence of many observational priors and non-linear variables. To ease this process,
Amelia has the ability to save and load sessions. A saved session includes all options
set by the user in addition to any output information from Amelia . Sessions are
useful for setting large numbers of options over multiple instances of Amelia or
imputing the data multiple times with the same setup.

19

0 10 20 30 40 50

2.
82

2.
84

2.
86

2.
88

2.
90

Overdispersed Start Values

Number of Iterations

La
rg

es
t P

rin
cip

le
 C

om
po

ne
nt

Convergence of original starting values

Figure 4: A problematic plot from the overdispersion diagnostic showing that EM
chains are converging to one of two different modes, depending upon the starting
value of the chain.

In AmeliaView, you can save a session by opening the “File” menu and selecting
“Save Session.” This will open a dialog that will ask for a filename (the file extension
must be “.r”). To load a saved session, simply navigate to the ”File” menu and select
”Load Session” and locate the saved session file. Note that the data file referenced
in the session file must be located in the same directory and have the same name
when attempting to load the session. Upon loading, Amelia configures all options
to same values as the saved session.

In some cases you may wish to load a AmeliaView session at the R command
line. To do so, use the source command to load the session file which will add a
list named amelia.list to your working environment. You can use this list in the
arglist options for the amelia function, which takes an Amelia output or session
list as its argument. An example of loading a session at the command line would
be:

> source("am-session.R")

> amelia.out <- amelia(data=x,arglist=amelia.list)

In this example am-session.R is the session file and x is the dataset that corre-
sponds to the session file. At the command line, you must load the data into R sep-
arately as sessions are not tied to specific datasets at the command line. When pro-
vided to Amelia , the argument list will take precedence over other arguments. For
example, specifying an identification variable with idvars while also using arglist

will result in Amelia ignoring the idvars provided by the user and refer to the
idvars setting in arglist.

20

−0.44 −0.42 −0.40 −0.38

0.
12

0.
14

0.
16

0.
18

Overdispersed Starting Values

First Principle Component

Se
co

nd
 P

rin
cip

le
 C

om
po

ne
nt

Figure 5: A alternate way to visualize the plot visualizing the parameter space in
two dimensions using the first two principal components of the end points of the EM
chains. The iteration number is no longer represented on the y-axis, although the
distance between iterations is marked by the distance between arrowheads on each
chain.

21

11 Error Checking and Reference Guide

In order to assure a smooth run of the algorithm, Amelia runs a check of all the
inputs passed to it. If it finds an error, it will exit the function and present you
with an error message and an error code. The vast majority of these checks keep
your inputs from crashing Amelia , but there are a few instances when you would
want to turn off checking. In these cases, you can use the incheck argument to the
amelia() function. Setting this option to FALSE will skip all error checking. Only
run Amelia with this option set if you know that all your inputs are correct and you
are sure you need to bypass a certain check.

11.1 Error Code Reference

Return Code Error Message

1 Normal run of Amelia

2
One or more imputations ended with a non-invertible covariance ma-
trix. Check for highly collinear variables.

3 One of the arguments points to an R variables that does not exists.

4
One variable in the data set is completely missing or only has one
observation.

5
One of the variables you have referred to in an argument does not match
any variable name in the data.

6
One of the column numbers in an argument is outside the range of the
data.

7 The priors matrix is not a matrix.

8 The priors matrix is non-numeric.

9 There are priors specified for cells not in the data.

10 A variable marked for a square root transformation has negative values.

11
A variable marked for a logistic transformation has values outside of
the 0-1 interval.

12 Confidence intervals on priors must be between 0 and 1.

13 Cannot set all the variables as identification variables.

14 The time series and cross sectional variables cannot be the same.

15 Only one time series variable can be specified.

16 Only one cross sectional variable can be specified.

17 The case priors must be in the form of a matrix.

18 The cross sectional variable must be set to use case priors.

19
The case priors have the wrong dimensions. They should be a kxk
matrix, where is k is the number of cases.

20 Case prior values must be either 0, 1, 2, or 3.

22

Return Code Error Message

21 The polynomials of time are longer than one variable.

22 The polynomials of time argument is not a number.

23 The polynomials of time argument is not an integer.

24 The polynomials of time argument is not between 0 and 3.

25
The polynomials of time argument is set without the time series variable
being set.

26
The interact with the cross-section argument (intercs) is set without
the cross-sectional variable being set.

28
There are too many cross sections to run Amelia with an interaction
between the cross section and the polynomials of time.

29 One of the logical arguments is longer than one.

30 One of the logical arguments is not a logical (TRUE/FALSE) value.

31 One of the logical arguments is NULL, but it must be (TRUE/FALSE).

32 One of the variables is marked for more than one transformation.

33
One of the time series or cross sectional variables is marked for trans-
formation, but these cannot be transformed.

34
The number of observations is too small to estimate the imputations for
the number of parameters included. Drop some parameters or increase
the empirical prior.

35
The tolerance parameter is less than or equal to zero. Your chains will
never converge.

36
The number of categories in a variable marked as nominal is greater
than one-third of the number of rows in the data. Make sure you have
set this argument correctly.

37

There is factor variable that isn’t marked as an identification, nominal,
ordinal, or cross sectional variable. These are non-numeric variables
and they cannot be imputed as anything other than a nominal or an
ordinal.

38
There is a character variable in your data. Remove it from your data
or convert it to a factor and set it accordingly (see error code 37).

39 There are no missing values in the data.

40 The lags argument is set without setting the time series variable.

41 The leads argument is set without setting the time series variable.

42
There is only one column of data. In order to impute, there has to be
more than one variable.

43 There is a variable in your data that does not vary.

44 A variable marked as an ordinal has non-integer values.

23

Return Code Error Message

45
The output filename is in a location that Amelia cannot write. Please
check file permissions and try again.

46
The argument list you provided was invalid. The arglist argument
only takes output lists from the amelia function or session lists from
AmeliaView sessions.

47 The priors matrix has the wrong dimensions.

48 There are missing values in the priors matrix.

43 There are multiple priors set for one observation or variable..

12 Command Line Argument Reference

12.1 amelia: Multiple Imputation of Incomplete Data

Syntax

amelia(data,m=5,p2s=1,frontend=FALSE,idvars=NULL,logs=NULL,

ts=NULL,cs=NULL,casepri=NULL,priors=NULL,empri=NULL,tolerance=0.0001,

polytime=NULL,startvals=0,lags=NULL, leads=NULL,

intercs=FALSE,archive=TRUE,sqrts=NULL,lgstc=NULL,

noms=NULL,incheck=T,ords=NULL,collect=FALSE,

outname="outdata",write.out=TRUE,arglist=NULL,keep.data=TRUE)

Arguments

• data: an incomplete dataset, organized into either a data frame or a matrix.

• m: the number of imputed datasets to create.

• p2s: an integer value taking either 0 for no screen output, 1 for normal screen
printing of iteration numbers, and 2 for detailed screen output. See ”Details”
for specifics on output when p2s=2.

• frontend: a logical value used internally for the GUI.

• idvars: a vector of column numbers or column names that indicates identifi-
cation variables. These will be dropped from the analysis but copied into the
imputed datasets.

• ts: column number or variable name indicating the variable identifying time
in time series data.

• cs: column number or variable name indicating the cross section variable.

• polytime: integer between 0 and 3 indicating what power of polynomial should
be included in the imputation model to account for the effects of time. A
setting of 0 would indicate constant levels, 1 would indicate linear time effects,
2 would indicate squared effects, and 3 would indicate cubic time effects.

24

• intercs: a logical variable indicating if the time effects of polytime should
vary across the cross-section.

• lags: a vector of numbers or names indicating columns in the data that should
have their lags included in the imputation model.

• leads: a vector of numbers or names indicating columns in the data that
should have their leads (future values) included in the imputation model.

• startvals: starting values, 0 for the parameter matrix from listwise deletion,
1 for an identity matrix.

• tolerance: the convergence threshold for the EM algorithm.

• logs: a vector of column numbers or column names that refer to variables
that require log-linear transformation.

• sqrts: a vector of numbers or names indicating columns in the data that
should be transformed by a sqaure root function. Data in this column cannot
be less than zero.

• lgstc: a vector of numbers or names indicating columns in the data that
should be transformed by a logistic function for proportional data. Data in
this column must be between 0 and 1.

• noms: a vector of numbers or names indicating columns in the data that are
nominal variables.

• ords: a vector of numbers or names indicating columns in the data that should
be treated as ordinal variables.

• incheck: a logical indicating whether or not the inputs to the function should
be checked before running amelia. This should only be set to FALSE if you are
extremely confident that your settings are non-problematic and you are trying
to save computational time.

• collect: a logical value indicating whether or not the garbage collection fre-
quency should be increased during the imputation model. Only set this to
TRUE if you are experiencing memory issues as it can significantly slow down
the imputation process.

• outname: a string indicating the prefix of the file to which Amelia will write
the imputed datasets. You can also specify a path in front of the prefix if
you do not wish your items stored in the working directory. The files will be
written as .csv files.

• write.out: a logical value indicating whether or not you wish to have Amelia
write your imputed datasets as comma-seperated value files. If TRUE, Amelia
will use the outname arugment as the file prefix.

25

• archive: a logical variable indicating whether a replication archive should be
saved. This archive includes all of the settings, the results of each imputation
and some information about the convergence. The output will be saved as
’amarchive.R’ in your working directory.

• arglist: an output list from the amelia function or from a saved session from
AmeliaView. Values from this list take precendent over any individually set
arugments. See the Amelia manual for more information.

• keep.data:a logical value indicating whether or not to keep the imputed
datasets after each imputation. Useful if the datasets are large and you wish
to avoid keeping them in memory after they have been written to a file.

• empri:number indicating level of the empirical (or ridge) prior. This prior
shinks the covariances of the data, but keeps the means and variances the
same for problems of high missingness, small N’s or large correlations among
the variables. Should be kept small; a reasonable upper bound is around 10%
of the rows of the data.

• casepri: indicator matrix of size kxk (where k is the number of cases) for
the degree of similarity between two cases. For example, the [2,3] entry would
indicate how similar cases 2 and 3 were. The indicators can be 0, 1, 2, or 3.
Values should only appear in the upper triangle, as values in the lower triangle
are ignored.

• priors: a four or five column matrix containing the priors for either individual
missing observations or variable-wide missing values. See ”Details” for more
information.

• autopri: allows the EM chain to increase the empirical prior if the path strays
into an nonpositive definite covariance matrix, up to a maximum empirical
prior of the value of this argument times n, the number of observations. Must
be between 0 and 1, and at zero this turns off this feature.

Details

Multiple imputation is a method for analyzing incomplete multivariate data. This
function will take an incomplete dataset in either data frame or matrix form and
return m imputed datasets with no missing values. The algorithm used first boot-
straps a sample dataset with the same dimensions as the original data, estimates the
sufficient statistics (with priors if specified) by EM, and then imputes the missing
values of sample. It repeats this process m times to produces the m complete datasets
where the observed values are the same and the unobserved values are drawn from
their posterior distributions.

You can provide Amelia with informational priors about the missing observations
in your data. To specify priors, pass a four or five column matrix to the priors

argument with each row specifying a different priors as such:

one.prior <- c(row, column, mean,standard deviation)

26

or,

one.prior <- c(row, column, minimum, maximum, confidence).

So, in the first and second column of the priors matrix should be the row and col-
umn number of the prior being set. In the other columns should either be the mean
and standard deviation of the prior, or a minimum, maximum and confidence level
for the prior. You must specify your priors all as distributions or all as confidence
ranges. Note that ranges are converted to distributions, so setting a confidence of 1
will generate an error.

Setting a priors for the missing values of an entire variable is done in the same
manner as above, but inputing a 0 for the row instead of the row number. If priors
are set for both the entire variable and an individual observation, the individual
prior takes precedence.

If each imputation is taking a long time to converge, you can increase the empir-
ical prior, empri. This value has the effect of smoothing out the likelihood surface
so that the EM algorithm can more easily find the maximum. It should be kept as
low as possible and only used if needed.

Amelia assumes the data is distributed multivariate normal. There are a number
of variables that can break this assumption. Usually, though, a transformation
can make any variable roughly continuous and unbounded. We have included a
number of commonly needed transformations for data. Note that the data will not
be transformed in the output datasets and the transformation is simply useful for
climbing the likelihood.

Please refer to the Amelia manual for more information on the function or the
options.

Output

A list containing the imputed datasets in objects 1 through m. Thus, you can refer
to any of the datasets by referencing output[[i]], where i is the number of the
dataset you wish to reference.

These datasets will be returned in the same format which you passed them. For
example, if you passed a data frame to amelia you will have m data frames in the
output list. If you passed a matrix, you will have m matrices in the output.

Other objects in the list:

• code: return code for the function. 0 indicates a successful run of Amelia.
Other codes refer to various problems in data or settings. Please refer to the
error message and the Amelia manual for help with errors.

• message: error message. Only appears if return code is not 0.

• amelia.args: list of the arguments used in the imputation along with a few
diagnostics on each imputation.

• thetas:a matrix of the output parameter matrices used to generate the im-
puted datasets.

27

13 AmeliaView Menu Guide

13.1 Step 1 - Input

Figure 6: Detail for step 1 on the front page of AmeliaView.

1. Input Data Format - Choose the format for your dataset. The format you
pick will be the default format that is shown when you open the “Browse” dia-
log. Currently, Amelia supports five different file formats: Comma-Separated
Values (.CSV), Tab-Delimited Text (.TXT), Stata v.5-8 (.DTA), SPSS (.DAT),
and SAS Transport (.XPORT).

2. Input Data File - Enter the location of your dataset. If your file is located in
a high level directory, it might be you are trying to access for more information.

3. Summarize Data - View plots and summary statistics for the individual vari-
ables. This button will bring up a dialog box with a list of variables. Clicking
on each variable will display the summary statistics on the right. Below these
statistics, there is a “Plot Variable” button, which will show a histogram of
the variable. For data that are string or character based, AmeliaView will not
show summary statistics or plot histograms.

13.2 Step 2 - Options

Figure 7: Detail for step 2 on the front page of AmeliaView.

28

1. Time Series Variable - Choose the variable that indexes time in the dataset.
If there is no time series component in your data, set it to “(none).” You must
set this option in order to access the Time Series Cross Sectional options dialog.

2. Cross Sectional Variable - Choose the variable that indexes the cross-
section. You must set this in order to access the “Set Case Priors” in the
“Priors” dialog.

3. Variables - Becomes available after you load the data. See 13.2.1 for more
information.

4. TSCS - Becomes available after you set the Time Series variable. See 13.2.2
for more information.

5. Priors - Becomes available after you load the data. See 13.2.3 for more infor-
mation.

13.2.1 Variables Dialog

Figure 8: Detail for Variable Options dialog.

1. Variable Transformations - Choose the transformation that best tailors the
variable to the multivariate normal, if appropriate. See 7.2 on Transformations
to see how each transformation is useful. You can also choose whether or not

29

the variable is an identification (ID) variable. If so, it will be left out of the
imputation model, but will remain in the imputed datasets. This is useful for
variables that have no explanatory power like extra case identifiers.

2. Tolerance - Adjust the level of tolerance that Amelia uses to check conver-
gence of the EM algorithm. In very large datasets, if your imputation chains
run a long time without converging, increasing the tolerance will allow a lower
threshold to judge convergence and end chains after fewer iterations.

13.2.2 Time Series Cross Sectional Dialog

Figure 9: Detail for Time-Series-Cross-Section Options dialog.

1. Polynomials of Time - This option, if activated, will have Amelia use trends
of time as a additional condition for fitting the missing data. The higher the
level of polynomial will allow more variation in the trend structure, yet it will
take more degrees of freedom to estimate.

2. Interact with Cross-Section - Interacting this with the cross section is way
of allowing the trend of time to vary across cases as well. Using a 0 level
polynomial and interacting with the cross section is the equivalent of using a
fixed effects. For more information see 7.4 above.

3. Variable Listbox - Choose the variables whose lag or lead you would like to
include in the imputation model.

30

4. Lag Settings - Choose to include lags and leads in the data set to handle the
effects of time. See 7.4 above.

13.2.3 Priors Dialog

Figure 10: Detail for Priors Options dialog.

1. Empirical Prior - A prior that adds observations to your data in order to
shrink the covariances. A useful place to start is around 0.5% of the total
number of observations in the dataset.

2. Set Case Priors - Tell Amelia which cases are similar. See 13.2.4 for more
details about case priors.

3. Set Observational Priors - Set prior beliefs about ranges for individual
missing observations. For more information about observational priors, see
8.2.

13.2.4 Case Priors

1. Case Names - The row and column name for each button indicate the re-
lationship that the button controls. For instance, the top-left button in the
“Burkina Faso” row and the “Burundi” column; thus, the setting on this
button will indicate the strength of the similarity prior between these two
cross-sections.

2. Buttons - Toggling the buttons will change the setting for each case. The
higher the number on the button, the stronger the indicated relationship is
believed to be. Find the column of the first country and then follow it down
to the row of the similar country. Press the button to raise the level similarity
from 0 to 1 to 2 to 3. You can reset the case priors by hitting the “Reset All”
button in the top left corner.

31

Figure 11: Detail for Case Priors dialog.

3. OK - Close the window and save any changes.

4. Cancel - Close the window and discard any changes.

5. Reset All - Sets all case priors to the default 0 setting.

13.2.5 Observational Priors

Figure 12: Detail for Observational Priors dialog

1. Current Priors - A list of current priors in distributional form, with the
variable and case name.

32

2. Add Distributional Prior - Add a prior belief about an observation or an
entire variable with a mean and standard deviation about the missing values.

3. Add Range Prior - Add a prior belief about an observation or an entire
variable with a range and a confidence level.

4. Remove Selected Priors - This will remove any of the current priors selected
with the check box.

13.2.6 Add Distribution Prior

Figure 13: Detail for Add Distributional Prior dialog

1. Case - Select the case name or number you wish to set the prior about. You
can also choose to make the prior for the entire variable. The case names are
generated from the row name of the observation, the value of the cross-section
variable of the observation and the value of the time series variable of the
observation.

2. Variable - The variable associated with the prior you would like specify. The
list provided only shows the missing variables for the currently selected obser-
vation.

3. Mean - The mean value of the prior. The textbox will not accept letters or
out of place punctuation.

4. Standard Deviation - The standard deviation of the prior. The textbox will
only accept positive non-zero values.

13.2.7 Add Range Prior

1. Case - Select the case name or number you wish to set the prior about. You
can also choose to make the prior for the entire variable. The case names are
generated from the row name of the observation, the value of the cross-section
variable of the observation and the value of the time series variable of the
observation.

33

Figure 14: Detail for Add Range Prior dialog

2. Variable - The variable associated with the prior you would like specify. The
list provided only shows the missing variables for the currently selected obser-
vation.

3. Minimum - The minimum value of the prior. The textbox will not accept
letters or out of place punctuation.

4. Maximum - The maximum value of the prior. The textbox will not accept
letters or out of place punctuation.

5. Confidence - The confidence level of the prior. This should be between 0 and
1, non-inclusive. This value represents how certain your priors are. This value
cannot be 1, even if you are absolutely certain of a give range. This is used to
convert the range into an appropriate distributional prior.

13.3 Step 3 - Output

Figure 15: Detail for step 3 on the front page of AmeliaView.

1. Output Data Format - Choose the format of output data. If you would
like to not save any output data sets (if you wanted, for instance, to simply
look at diagnostics), set this option to “(no save).” Currently, you can save
the output data as: Comma Separated Values (.CSV), Tab Delimited Text
(.TXT), or Stata (.DTA).

34

2. Name of Imputed Datasets - Enter the prefix for the output data files. If
you set this to “mydata”, your output files will be mydata1.csv, mydata2.csv...

etc. Try to keep this name short as some operating systems have a difficult
time reading long filenames.

3. Number of Imputed Datasets - Set the number of imputations you would
like. In most cases, 5 will be enough to make accurate predictions about the
means and variances.

4. Run Amelia - Runs the Amelia procedure on the input data. A dialog will
open marking the progress of Amelia. Once it is finished, it will tell you that
you can close the dialog. If an error message appears, follow its instructions;
this usually involves closing the dialog, resetting the options, and running the
procedure again.

5. Diagnostics - Post-imputation diagnostics. The only currently available graph
compares the densities of the observed data to the mean imputation across the
m imputed datasets.

13.3.1 Diagnostics Dialog

Figure 16: Detail for Diagnostics dialog.

1. Compare Plots - This will display the relative densities of the observed (red)
and imputed (black) data. The density of the imputed values are the average
imputations across all of the imputed datasets.

2. Overimpute - This will run Amelia on the full data with one cell of the
chosen variable artificially set to missing and then check the result of that

35

imputation against the truth. The resulting plot will plot average imputations
against true values along with 90% confidence intervals. These are plotted
over a y = x line for visual inspection of the imputation model.

3. Number of overdispersions - When running the overdispersion diagnostic,
you need to run the imputation algorithm from several overdispersed starting
points in order to get a clear idea of how the chain are converging. Enter the
number of imputations here.

4. Number of dimensions - The overdispersion diagnostic must reduce the
dimensionality of the paths of the imputation algorithm to either one or two
dimensions due to graphical restraints.

5. Overdisperse - Run overdispersion diagnostic to visually inspect the con-
vergence of the Amelia algorithm from multiple start values that are drawn
randomly.

References

Abayomi, Kobi, Andrew Gelman and Marc Levy. 2005. “Diagnostics for Multivariate
Imputations.” Working Paper .

Honaker, James and Gary King. 2006. “What to do About Missing Values in Time
Series Cross-Section Data.”. http://gking.harvard.edu/files/abs/pr-abs.shtml.

King, Gary. 1995. “Replication, Replication.” PS: Political Science and Politics 28(3,
September):443–499. http://gking.harvard.edu/files/abs/replication-abs.shtml.

King, Gary, James Honaker, Anne Joseph and Kenneth Scheve. 2001. “An-
alyzing Incomplete Political Science Data: An Alternative Algorithm for
Multiple Imputation.” American Political Science Review 95(1, March):49–69.
http://gking.harvard.edu/files/abs/evil-abs.shtml.

King, Gary, Michael Tomz and Jason Wittenberg. 2000. “Making the
Most of Statistical Analyses: Improving Interpretation and Presen-
tation.” American Journal of Political Science 44(2, April):341–355.
http://gking.harvard.edu/files/abs/making-abs.shtml.

Schafer, Joseph L. 1997. Analysis of incomplete multivariate data. London: Chap-
man & Hall.

36

	Introduction
	What Amelia Does
	Versions of Amelia
	Installation and Updates
	Windows --- AmeliaView
	Windows --- Amelia II for R
	Linux

	Program Overview
	AmeliaView
	Amelia for R

	Data Input and Output
	AmeliaView
	Amelia for R

	Options
	Screen Output
	Transformations of Variables
	Ordinal
	Nominal
	Natural Log
	Square Root
	Logistic

	Identification Variables
	Time Series, or Time Series Cross Sectional Data

	Setting Priors
	Empirical (Ridge) Priors for High Missingness, Small n's, or Large Correlations
	Observation-level priors

	Diagnostics
	Compare
	Overimpute
	Overdispersed Starting Values

	Sessions
	Error Checking and Reference Guide
	Error Code Reference

	Command Line Argument Reference
	amelia: Multiple Imputation of Incomplete Data

	AmeliaView Menu Guide
	Step 1 - Input
	Step 2 - Options
	Variables Dialog
	Time Series Cross Sectional Dialog
	Priors Dialog
	Case Priors
	Observational Priors
	Add Distribution Prior
	Add Range Prior

	Step 3 - Output
	Diagnostics Dialog

