
Amelia II: A Program for Missing Data

James Honaker, Gary King, and Matthew Blackwell

September 15, 2006

Contents

1 Introduction 3

2 What Amelia Does 3

3 Versions of Amelia 4

4 Installation and Updates 5
4.1 Windows — AmeliaView . 5
4.2 Windows — Amelia II for R . 5
4.3 Linux . 5

5 Program Overview 6
5.1 AmeliaView . 6
5.2 Amelia for R . 7

6 Data Input and Output 7
6.1 AmeliaView . 7
6.2 Amelia for R . 8

7 Options 8
7.1 Screen Output . 9
7.2 Transformations of Variables . 9

7.2.1 Ordinal . 9
7.2.2 Nominal . 10
7.2.3 Natural Log . 10
7.2.4 Square Root . 10
7.2.5 Logistic . 11

7.3 Identification Variables . 11
7.4 Time Series, or Time Series Cross Sectional Data 11

8 Setting Priors 12
8.1 Empirical (Ridge) Priors for High Missingness, Small n’s, or Large

Correlations . 12
8.2 Observation-level priors . 13

9 Diagnostics 13
9.1 Compare . 14
9.2 Overimpute . 15
9.3 Overdispersed Starting Values . 17

10 Sessions 19

11 Reference 21

1

12 Menu Guide 21
12.1 Step 1 - Input . 21
12.2 Step 2 - Options . 21

12.2.1 Variables Dialog . 22
12.2.2 Time Series Cross Sectional Dialog 23
12.2.3 Priors Dialog . 24
12.2.4 Case Priors NOT CURRENTLY IMPLEMENTED . . . 25
12.2.5 Observational Priors NOT CURRENTLY IMPLEMENTED 26

12.3 Step 3 - Output . 26
12.3.1 Diagnostics Dialog . 27

2

1 Introduction

This manual presents a brief introduction to the Amelia II software package for
multiple imputation. We wrote the first version of Amelia to remedy the discrep-
ancy between the way social scientists then analyzed data with missing values and
the recommendations of the statistics community. With a few notable exceptions,
statisticians and methodologists had agreed on the advantages of the concept of
“multiple imputation” as a general-purpose approach to data with missing values;
yet at the time most social scientists had still used listwise deletion (deleting all
observations with at least one missing cell) or other ad hoc techniques like best
guess or mean imputation to make inferences in the presence of missing data. These
practices are known to be inefficient and often biased. Unfortunately, many of the
multiple imputation methods that had been used previously were unfit for handling
the common problems of social science data and were often difficult to use, even for
experts.

A key reason multiple imputation had not been used frequenly in the social sci-
ences is because it was developed so that producers of large public-use data sets
could conduct the imputation for the analyst, but this paradigm did not help those
who collected, merged, or processed their own data. Before King, Honaker, Joseph
and Scheve (2001), a small number of public use data sets had been imputed, but
very few researchers had imputed a data set or used multiple imputation. The con-
tribution of the work that led to the first version of Amelia was the EMis algorithm
that produced imputations requiring less expertise to use and with more speed than
existing MCMC-based methods. This made it possible to write Amelia II so that
scholars can impute their own data, rather than waiting for others to do it for them.
The boostrapping-based EMB algorithm included in Amelia II can impute many
more variables, with many more observations. It also has features to make valid and
accurate imputations for time series cross-sectional data.

This software implements the ideas developed in King, Honaker, Joseph and
Scheve (2001) and Honaker and King (2006). Please read these in conjunction with
this manual.

2 What Amelia Does

Multiple imputation involves imputing m values for each missing cell in your data
matrix and creating m “completed” data sets. (Across these completed data sets,
the observed values are the same, but the missing values are filled in with different
imputations that reflect the uncertainty about the missing data.) After imputation
with our algorithm, you can apply whatever statistical method you would have
used if there had been no missing values to each of the m data sets, and use a
simple procedure, described in the next paragraph, to combine the results. (You
can combine the results automatically by doing your data analyses within Zelig,
or within Clarify for Stata; see http://gking.harvard.edu/stats.shtml.) Under
normal circumstances, you only need to impute once and can then analyze the m
imputed data sets as many times and for as many purposes as you wish. The
advantage of Amelia II is that it combines the comparative speed and ease-of-

3

http://gking.harvard.edu/stats.shtml

use of our algorithm with the power of multiple imputation, to let you focus on
your substantive research questions rather than spending time developing complex
application-specific models for nonresponse in each new data set. Unless the rate of
missingness is very high, m = 5 (the program default) is probably adequate.

In order to combine the results across m data sets, first decide on the quantity
of interest to compute, such as univariate mean, regression coefficient, predicted
probability, or first difference. Then, the easiest way is to draw 1/m simulations of q
from each of the m data sets, combine them into one set of m simulations, and then
to use the standard simulation-based methods of intepretation common for single
data sets (King, Tomz and Wittenberg, 2000).

Alternatively, you can combine directly and use as the multiple imputation esti-
mate of this parameter, q̄, the average of the m separate estimates, qj (j = 1, ...,m):

q̄ =
1

m

m∑
j=1

qj. (1)

The variance of the point estimate is the average of the estimated variances from
within each completed data set, plus the sample variance in the point estimates
across the data sets (multiplied by a factor that corrects for the bias because m <
∞). Let SE(qj)

2 denote the estimated variance (squared standard error) of qj from
the data set j, and S2

q = Σm
j=1(qj − q̄)2/(m − 1) be the sample variance across the

m point estimates. The standard error of the multiple imputation point estimate is
the square root of

SE(q)2 =
1

m

m∑
j=1

SE(qj)
2 + S2

j (1 + 1/m). (2)

Users should see especially Pp. 57-58 of King et al. (2001) for a variety of
practical suggestions in making imputations, such as what variables to include in
the imputation stage, how to keep imputations within logically possible ranges, etc.

3 Versions of Amelia

Two versions of Amelia are available, each with its own advantages and drawbacks.
First, Amelia II exists as a package, or collection of functions, for the R statisti-
cal software package. Users can utilize their knowledge of the R language to run
Amelia II at the command line or to create scripts that will run Amelia II and
preserve the commands for future use. Alternatively, AmeliaView, an interactive
Graphical User Interface (GUI), allows users to set options and run Amelia without
any knowledge of the R programming language. AmeliaView enables users to set
all of the Amelia II options and, thus, empowers those with limited or no coding
experience to create expert level imputations.

Both versions of Amelia II are available on the Windows and Linux platforms
and Amelia II for R runs in any environment that R can. All versions of Amelia
require the R software, which is freely available at http://www.r-project.org/.

4

http://www.r-project.org/

4 Installation and Updates

Before installing Amelia II , you must have installed R version 2.1.0 or higher,
which is freely available at http://www.r-project.org/.

4.1 Windows — AmeliaView

To install AmeliaView in the Windows environment, simply download the installer
setup.exe from http://gking.harvard.edu/amelia/ and run it. The installer
will ask you to choose a location to install Amelia. If you have installed R with
the default options, Amelia will automatically find the location of R. If the installer
cannot find R, it will ask you to locate the directory of the most current version of
R. Make sure you choose the directory name that includes the version number of
R (e.g. C:/Program Files/R/R-2.2.0) and contains a subdirectory named bin. The
installer will also put shortcuts on your Desktop and Start Menu.

4.2 Windows — Amelia II for R

Users familiar with the R language, and who intend to use Amelia primarily as
a function within other R code can install all the Amelia functions as one would
install any other Amelia library. There is a .zip package install, which can be added
to the library path. Additionally the functions are provided in a set of five source
files which can be sourced into any R code directly.

Even users familiar with the R language may find it useful to utilize Ameli-
aView to set options on variables, change arguments, or run diagnostics. From the
command line, AmeliaView can be brought up with the call:

> ameliagui()

4.3 Linux

To install Amelia in a Linux OS, you must install the Amelia library into your
version of R. This is true even if users only wish to use AmeliaView. Download the
package from http://gking.harvard.edu. Then, in the same directory as the file,
at the Linux/Unix command line type

> R CMD INSTALL --library=.R/library amelia_1.0.tar.gz .

If you do not have access to the root, you can install the package locally. Create a
directory (i.e. myrlibrary) to be the local storage space for R packages. Once this
directory is created you can install the package to that local library:

> R CMD INSTALL --library=~/myrlibrary amelia_1.0.tar.gz .

Once this is complete you need to edit or create your R profile. Locate or create
/.Rprofile in your home directory and add this line:

5

http://www.r-project.org/
http://gking.harvard.edu/amelia/
http://gking.harvard.edu

.libPath(‘‘~/myrlibrary’’)

This will add your local library to the list of library paths that R searches in when
you load libraries.

Linux users can use AmeliaView in the same way as Windows users of Amelia
for R. From the command line, AmeliaView can be brought up with the call:

> ameliagui()

5 Program Overview

5.1 AmeliaView

Built around the core of the R library, AmeliaView has a graphic interface for users
to input data, set options, create the imputed data sets, and run diagnostics. The
structure of the program moves logically through these steps. In Windows, this can
be accessed from the desktop shortcut created by the installer. In Linux, accessing
the GUI requires calling a function from within R1. Once AmeliaView is open, no
further use of R is required.

The main window of AmeliaView is divided into three steps. In Step 1, you
indicate the location of your data and load it into the program. In Step 2, you can
set options about your data by using the Options dialogs. In Step 3, you can set
options about the output of Amelia and execute the Amelia code. You have the
option to save your output data files for further use.

In most simple applications, all you will need to do is load an input data file, set
any options you desire, and hit the “Run Amelia” button. For example:

1. Specify the type of data file you wish to input by using the “Input Data Type”
drop-down menu. Next, use the “Browse...” button to find the location of your
data file. Once this is specified, you can hit the “Load Data” button to load the
data. If your data loads correctly, the status bar at the bottom of the program
will show the filename, number of rows and number of columns. At this point
you can use the “Summarize Data” button to view summary statistics about
the variables along with histogram plots of them.

2. In the Options step, you can specify the time series and cross sectional variables
in your data set (if any) by using the appropriate drop-down menus. Each of
the “Variables”, “TSCS”, and “Priors” buttons open a separate dialog box in
which you can set options in each of these categories.

3. In the Output step, you can specify what file type (if any) in which you would
like to save your output data. You can also set the name of the output data and
the number of data sets you would like. You can now run Amelia by pressing
the “Run Amelia” button. A dialog will open that tracks the progress of
Amelia and will let you know when it has finished. Once this is complete, you
can either use the diagnostics or close Amelia.

1AmeliaView can be called from within R in Windows, as well, using the ameliagui() function.

6

5.2 Amelia for R

Using Amelia in R you will first have to load the library into R using the library(amelia)
command. Once the package is loaded, you can set options using the arguments of
the amelia() function. The output data will be either a list of m data frames or
matrices depending on the your input data. Please refer to the end of this manual
for detailed documentation on adjusting the optional arguments from their default
values.

6 Data Input and Output

6.1 AmeliaView

AmeliaView uses the “foreign” package in R to import and export various types of
files. In the Input box, you can choose the file type you wish to use from the group
of supported file types: Comma Separated Values (.csv), Tab-Delimited (.txt), Stata
(.dta), SPSS (.dat), and SAS Transport (.xport). Once this is set, you can proceed
to locate your file in one of two ways. You can type the location of the file in the
“Input Data File” entry and press the “Load Data” button. Or you can locate your
file by using the “Browse...” button to select the file of your choice. Once you have
entered the file name, press the “Load Data” button to load the file into Amelia.

When you have loaded the data, you can use the “Summarize Data” button to
see the data. This includes seeing the minimum and maximum values along with
the mean and standard deviation. Another feature is the ability to view a plot of
the histogram of each individual variable. This can help you get a graphical sense
of the observed values in your dataset.

Fewer options exist for the output data files due to the limitations of the “foreign”
package. You can only save the imputed datasets as either a CSV, Tab-Delimited,
or Stata file. However, most statistical packages will allow you to read in datasets
as either CSV or Tab-delimited. The names of the files will be the name you spec-
ify, plus a number appended at the end to distinguish between successive imputed
datasets. For example, if you set the name to be “mydata” and the output file type
to be CSV, your files would be:

mydata1.csv

mydata2.csv

...

There will be as many datasets as you indicate in the output options box.
Another output file that is produced when running Amelia is the Replication

Archive. This file can be used to reproduce the same set of options you ran Amelia
with so that you or anyone else can replicate the same findings. This file automat-
ically saves to “amarchive.r”. This file can also serve as a session save that can be
opened later to load the same options that you ran Amelia under. This allows you

7

to pick up where you left off in the next run of Amelia, adjust options and rerun
the imputations, or return at a later point and use the diagnostic routines.

6.2 Amelia for R

Data input in the command-line version of Amelia for R is identical to any data input
in R. You must have your data in either a text format such as Comma Separated
Values (.csv) or Tab-Delimited (.txt) and then read them into R (generally this
would involve the functions read.csv or read.table, respectively). You can read
about the specifics of how to load data into R in the R documentation. Of course
your data may be generated by code and amelia called as a function later in that
code.

Besides various commercial packages to transfer your data between formats, a
viable option is using the foreign package. This package can greatly expand the
number of different formats that R can input, including Stata, SPSS, and SAS
transport.

Whichever way you get your data into R, when passing it to the amelia function,
it can either be in the form of a data frame or matrix. After Amelia has run, you
will get datasets returned in the same type as the format of the dataset given to the
amelia function. Once you have these datasets, you can manipulate them in R or
save them to files using the R function write.

For example, a simple session or code fragment might be:

> library(amelia)

> x<-read.table("mydata.csv")

> empri<-10

> amords<-c(3,4)

> output<-amelia(data=x,empri=empri,amords=amords)

> save(output,file="output.rData")

where amords and empri are options detailed later in this manual.

7 Options

There are a variety of options in Amelia that customize the imputation model to
handle problems that are common in social science data. In AmeliaView, these
options are set using the dialog boxes “Variables,” “TSCS,” and “Priors.” At these
dialogs, the user can visually inspect and set each option. Please refer to the Menu
Guide below for details on the content of the dialogs.

In Amelia for R, these options must be set on the command line. From within
R, users can set the transformations by including a vector of column numbers or
names (if column names exist), that Amelia should transform. For example,

> amelia(mydata, logs=c(2,3,7))

or

> amelia(mydata, noms=c(‘‘gdp’’,‘‘population’’)).

8

7.1 Screen Output

The output of the imputation model in the AmeliaView program appears in a new
window. It lists stages of the imputation model, including the number of iterations
of the EM chain necessary in each of the bootstraps.

Screen output in the R command level can be adjusted with the “print to screen”
argument, p2s. At a value of 0, no screen printing will occur. This may be useful
in large jobs or simulations where a very large number of imputation models may
be required. The default value of 1, lists each bootstrap, and displays the number
of iterations required to reach convergence in that bootstrapped dataset. The value
of 2 gives more thorough screen output, including, at each iteration, the number
of parameters that have significantly changed since the last iteration. This may be
useful when the EM chain length is very long, as it can provide an intuition for
many parameters still need to converge in the EM chain, and a sense of the time
remaining. However, it is worth noting that the last several parameters can often
take a significant fraction of the total number of iterations to converge.

7.2 Transformations of Variables

Social science data commonly includes variables that fail to fit into a multivariate
normal distribution. Indeed, numerous model have been introduced specifically to
deal with the problems they present. As it turns out, much evidence in the liter-
ature (discussed in our paper) indicates that the multivariate normal model used
in Amelia usually works well for the imputation stage even when discrete or non-
normal variables are included and when the analysis stage involves these limited
dependent variable models. Nevertheless, Amelia includes some limited capacity to
deal directly with ordinal and nominal variables and to variables that require other
transformations. In general nominal and log transform variables must be declared
to Amelia , whereas ordinal (including dichotomous) variables often need not be, as
described below. (For harder cases, see Schafer, 1997, for specialized MCMC-based
imputation models for discrete variables.)

Although these transformations are taken internally on these variables to better
fit the data to the multivariate normal assumptions of the imputation model, all the
imputations that are created will be returned in the original untransformed form of
the data. The fully imputed datasets that are returned will always be in the form
of the original data that is passed to the amelia routine.

7.2.1 Ordinal

In much statistical research, researchers treat independent ordinal (including di-
chotomous) variables as if they were really continuous. If the analysis model to be
employed is of this type, then nothing extra is required of the of the imputation
model. Users are advised to allow Amelia to impute non-integer values for any
missing data, and to use these non-integer values in their analysis. Sometimes this
makes sense, and sometimes this defies intuition. One particular imputation of 2.35
for a missing value on a seven point scale carries the intuition that the respondent is
between a 2 and a 3 and most probably would have responded 2 had the data been

9

observed. This is easier to accept than an imputation of 0.79 for a dichotomous
variable where a zero represents a male and a one represents a female respondent.
However, in both cases the non-integer imputations carry more information about
the underlying distribution than would be carried if we were to force the imputa-
tions to be integers. Thus whenever the analysis model permits, missing ordinal
observations should be allowed to take on continuously valued imputations.

Often, however, analysis models require some variables to be strictly ordinal, as
for example the dependent variable must be in a logistical regression. Imputations
for variables set as ordinal are created by taking the continuously valued imputation
and using an appropriately scaled version of this as the probability of success in a
binomial distribution. The draw from this binomial distribution is then translated
back into one of the ordinal categories.

7.2.2 Nominal

Nominal variables (other than dichotomous) must be treated quite differently than
ordinal variables. Any multinomial variables in the data set (such as religion coded
1 for Catholic, 2 for Jewish, and 3 for Protestant) must be specified to Amelia.

For a p-category multinomial variable, Amelia will find p (as long as your data
contain at least one value in each category), and substitute p − 1 binary variables
to specify each possible category. These new p − 1 variables will be treated as the
other variables in the multivariate normal imputation method chosen, and receive
continuous imputations. These continuously valued imputations will then be ap-
propriately scaled into probabilities for each of the p possible categories, and one
of these categories will be drawn, where upon the original p-category multinomial
variable will be reconstructed and returned to the user. Thus all imputations will
be appropriately multinomial.

Since Amelia properly treats a p-category multinomial variable as p−1 variables,
one should understand the number of parameters that are quickly accumulating if
many multinomial variables are being used. If the square of the number of real
and constructed variables is large relative to the number of observations, the user is
recommended to implement a ridge prior distribution on the parameter space.

7.2.3 Natural Log

If one of your variables is heavily skewed or has outliers that may alter the imputation
in an unwanted way, you can use a natural logarithm transformation of that variable
in order to normalize its distribution. This transformed distribution help Amelia
to avoid imputing values that depend too heavily on outlying data points. Log
transformations are common in expenditure and economic variables where we have
strong beliefs that the marginal relationship between two variables decreases as we
move across the range.

7.2.4 Square Root

Event count data is often heavily skewed and has nonlinear relationships with other
variables. One common transformation to tailor the linear model to count data is

10

to take the square roots of the counts. This is a transformation that can be set as
an option in amelia.

7.2.5 Logistic

Proportional data is sharply bounded between 0 and 1. A logistic transformation
is one possible option in amelia to make the distribution symmetric and relatively
unbounded.

7.3 Identification Variables

Datasets often contain identification variables, such as country names, respondent
numbers, or other id numbers, codes or abbreviations. Sometimes these are text and
sometimes these are numeric. Often it is not appropriate to include these variables in
the imputation model, but it is useful to have them remain in the imputed datasets
(However, there are models that would include the ID variables in the imputation
model, such as fixed effects model for data with repeated observations of the same
countries). Identification variables which are not to be included in the imputation
model can be identified with the argument idvars. These variables will not be used
in the imputation model, but will be kept in the imputed datasets.

In order to conserve memory, it is wise to remove unnecessary variables from a
data set before loading it into Amelia. The only variables you should include in
your data when running Amelia are variables you will use in the analysis stage and
those variables that will help in the imputation model. While it may be tempting
to simply mark unneeded variables as IDs, it only serves to waste memory and slow
down the imputation procedure.

7.4 Time Series, or Time Series Cross Sectional Data

Many variables that are recorded over time within a cross-sectional unit are observed
to vary smoothly over time. In such cases, knowing the observed values of obser-
vations close in time to any missing value may enormously aid the imputation of
that value. However, the exact pattern may vary over time within any cross-section.
There may be periods of growth, stability, or decline; in each of which the observed
values would be used in a different fashion to impute missing values. Also, these
patterns may vary enormously across different cross-sections, or may exist in some
and not others. Amelia can build a general model of patterns within variables across
time by creating a sequence of polynomials of the time index. If, for example, GDP
varies smoothly over time, then we make the modeling assumption that there exists
some polynomial that describes the economy in cross-sectional unit i at time t as:

GDP(t)i = β0 + β1t + β1t
2 + β1t

3 . . . (3)

And thus if we include enough higher order terms of time then the pattern between
observed values of GDP can be estimated. Amelia will create polynomials of time
up to the user defined k-th order, (k ≤ 3). If cross-sectional units are specified
these polynomials can be interacted with the cross-section unit (this is the default)

11

to allow the patterns over time to vary between cross-sectional units. Unless you
strongly believe all units have the same patterns over time in all variables, this is a
reasonable default. When k is set to 0, this interaction simply results in a model of
fixed effects where every unit has a uniquely estimated constant term.

In AmeliaView, the TSCS settings can be adjusted in the Time Series Cross-
Sectional Dialog (discussed in section 12.2.2 of this manual). At the R command
line, these options can be set as:

> amelia(mydata, ts=1, cs=2, polytime=2, intercs=TRUE)

Where ts and cs give the locations of the time and cross-section indicators (often
country names and years, respectively), polytime is an integer between 0 and 3
inclusive, that sets the order of polynomials to use, and intercs defines whether
these polynomials should be interacted with the cross-sectional unit.

8 Setting Priors

Amelia has number of methods of setting priors within the imputation model. Two
of these are commonly used and discussed below, ridge priors and observational
priors.

8.1 Empirical (Ridge) Priors for High Missingness, Small
n ’s, or Large Correlations

When the data to be analyzed contain a high degree of missingness or very strong
correlations among the variables, or when the number of observations is only slightly
greater than p(p + 3)/2 (where p is the number of variables), results from your
analysis model will be more dependent on the choice of imputation model. This
suggests more testing in these cases of alternative specifications under Amelia.

In addition, in these circumstances, we recommend adding a ridge prior which
will help with numerical stability by shrinking the covariances among the variables
toward zero without changing the means or variances. The ridge prior can be im-
plemented by setting the option empri in R and the Ridge Prior entry under the
“Priors” button in the standalone. Including this prior as a positive number is
roughly equivalent to adding empri artificial observations to the data set with the
same means and variances as the existing data but with zero covariances. Thus, in-
creasing the empri setting results in more shrinkage of the covariances thus putting
more a priori structure on the estimation problem. In general, keep the value on
this prior relatively small and increase it only when necessary. A recommendation
of 0.5 to 1 percent of the number of observations, n, is a reasonable starting value,
and often useful in large datasets to add some numerical stability. For example, in
a dataset of two thousand observations, this would translate to a prior value of 10
or 20 respectively. A prior of up to 5 percent is moderate in most applications.

12

8.2 Observation-level priors

Reseachers often have additional prior information about missing data values based
on previous research, academic consensus, or personal experience. Amelia can in-
corporate this information to produce vastly improved imputations. The Amelia
algorithm allows users to include informative Bayesian priors about individual miss-
ing data cells instead of the more general model parameters, many of which have
little direct meaning.

The incorporation of priors follows basic Bayesian analysis where the imputation
turns out to be a weighted average of the model-based imputation and the prior
mean, where the weights are functions of the relative strength of the data and prior:
when the model predicts very well, the imputation will downweight the prior, and
vice versa.

The priors about individual observations should describe the analyst’s belief
about the distribution of the missing data cell. This can either take the form of a
mean and a standard deviation. For instance, we might know that GDP growth for
Ghana in a given year was somwhere around 3.5%, but we have some uncertainty as
to the exact value. Our prior belief about the distribution of the missing data cell,
then, centers on 3.5 with a standard deviation that reflects the amount of uncertainty
we have about our prior belief.

In AmeliaView, the observational priors dialog will guide you through adding
priors to the imputation. Refer to section 12.2.5 for further details on how to add
priors in AmeliaView.

To include an observation level prior to Amelia, you must build a few matrices
that have the same dimensions as the orignal data matrix. If you are describing
the distribution by the mean and standard deviation, you will need to build two
matrices, one for the mean and one for the standard deviation. To add the prior,
first note the cell position of the missing data value in question; that is, find its
row and column number in R. From here, find the same position in the matrix of
prior means and place your prior belief about the mean in this cell. Repeat the
same procedure for the standard deviation and then include them with the amelia

function with the means and sds arguments. An example of this would go as follows:

> n <- nrow(data) ## grab the rows of the data

> p <- ncol(data) ## grab the columns of the data

> mean.priors <- matrix(NA,nrow=n,ncol=p) ## make priors matrices of

> sds.priors <- matrix(NA,nrow=n,ncol=p) ## the same size as the data

> means.priors[150,4] <- 3.5

> sds.priors[150,4] <- .5 ## set priors for the cell at row 150, column 4

> amelia.out <- amelia(data = data, means = means.priors, sds = sds.priors)

9 Diagnostics

Amelia currently provides three diagnostic tools to inspect the imputations that
are created. These routines compare, overimpute and overdisperse graphically
investigate the distribution of the imputations, the fit of the imputation model, and

13

modality of the Likelihood space optimized by the EM chain, respectively. We are
currently developing other diagnostic routines and tests.

9.1 Compare

In the diagnostic window of AmeliaView, the compare function will, for a given
variable, generate a plot of the relative frequencies of the observed data with an
overlay of the relative frequency of the imputed values. The imputed curve plots
the density of the mean imputation over the m datasets. That is, for each cell that
is missing in the variable the diagnostic will find the mean of the that cell in each of
the m datasets and use that value for the density plot. These graphs will allow you
to inspect how the density of imputations compares to the density of observed data.
Some discussion of these graphs can be found in Gelman et al (2005). Minimally,
these graphs can be used to check that the mean imputation falls within known
bounds, when such bounds exist in certain variables or settings.

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Observed and Imputed values of

re
la

tiv
e

de
ns

ity

Mean Imputations
Observed Values

−2 0 2 4 6 8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Observed and Imputed values of

re
la

tiv
e

de
ns

ity
Mean Imputations
Observed Values

Figure 1: Two examples of the compare diagnostic graph. In the left graph all the
imputations, the density of which is shown in black, are contained within the range
of the observed data for this variable (in red). In the right graph some of the mean
imputed values are larger than the largest observed value. This may be reasonable
(if for example, high income respondents to a survey do not report their income)
or may be a warning to change the imputation model, if for example the data has
strong bounds and these imputations fall well outside these bounds.

This graph can also be called from R as:

> output<-amelia(data=x)

> compare.density(data=x,output=output,var=3)

14

where var is the column number (or the name) of the variable you would like to
produce the graph for.

9.2 Overimpute

Overimputing is a technique we have developed to judge the fit of the imputation
model. Because of the nature of the missing data mechanism, it is impossible to
tell whether the mean prediction of the imputation model is close to the unobserved
value that is trying to be recovered. By definition this missing data does not exist
to create this comparison, and if it existed we would no longer need the imputations
or care about their accuracy. However, a natural question the applied researcher
will often ask is how accurate are these imputed values?

Overimputing involves sequentially treating each of the observed values as if
they had actually been missing. For each observed value in turn we then generate
several hundred imputed values of that observed value, as if it had been missing.
While m = 5 imputations are sufficient for most analysis models, this large number
of observations allows us to construct a confidence interval of what the imputed
value would have been, had any of the observed data been missing. We can then
graphically inspect whether our observed data tends to fall within the region where
it would have been imputed had it been missing.

Our overimputation diagnostic runs this procedure through all of the observed
values for a user selected variable. We can graph the estimates of each observation
against the true values of the observation. On this graph, a y = x line indicates the
line of perfect agreement; that is, if the imputation model was a perfect predictor
of the true value, all the imputations would fall on this line. For each observation,
Amelia also plots 90% confidence intervals that allows the user to visually inspect
the behavior of the imputation model. By checking how many of the confidence
intervals cover the y = x line, we can tell how often the imputation model can
confidently predict the true value of the observation.

Occasionally, the overimputation can display unintuitive results. For example,
different observations may have different number of observed covariates. If covariates
that are useful to the prediction are themselves missing, then the confidence interval
for this observation will be much larger. In the extreme, there may be observations
where the observed value we are trying to overimpute is the only observed value in
that observation, and thus there is nothing left to impute that observation with when
we pretend that it is missing, other than the mean and variance of that variable. In
these cases, we should correctly expect the confidence interval to be very large.

An example of this graph is shown in figure 2. In this simulated bivariate dataset,
one variable is overimputed and the results displayed. The second variable is either
observed, in which case the confidence intervals are very small and the imputations
(yellow) are very accurate, or the second variable is missing in which case this
variable is being imputed simply from the mean and variance parameters, and the
imputations (red) have a very large and encompassing spread. The circles represent
the mean of all the imputations for that value. As the amount of missing information
in a particular pattern of missingness increases, we expect the width of the confidence
interval to increase. The color of the confidence interval reflects the percent of

15

0.0 0.2 0.4 0.6 0.8 1.0

−0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Observed versus Imputed Values

Observed values

Im
pu

te
d

va
lu

es

 0−.2 .2−.4 .4−.6 .6−.8 .8−1

Figure 2: An example of the overimpute diagnostic graph. Here ninety percent
confidence intervals are constructed that detail where an observed value would have
been imputed had it been missing from the dataset, given the imputation model.
The dots represent the mean imputation. Around ninety percent of these confidence
intervals contain the y = x line, which means that the true observed value falls
within this range. The color of the line (as coded in the legend) represents the
fraction of missing observations in the pattern of missingness for that observation.
The yellow lines have more information (observed covariates) from which to impute
the variable, and thus much tighter bounds.

16

covariates observed in that pattern of missingness, as reflected in the legend at the
bottom.

This graph can also be called from R as:

> output<-amelia(data=x)

> overimpute(data=x,output=output,var=3)

where var is the column number (or the name) of the variable you would like to
produce the graph for.

9.3 Overdispersed Starting Values

If the data given to Amelia has a poorly behaved likelihood, the EM algorithm
can have problems finding a global maximum of the likelihood surface and starting
values can begin to effect imputations. Because the EM algorithm is deterministic,
the point in the parameter space where you start it can impact where it ends, though
this is irrelevant when the likelihood has only one mode. However, if the starting
values of an EM chain are close to a local maximum, the algorithm may find this
maximum, unaware that there is a global maximum farther away. To make sure that
our imputations do not depend on our starting values, a good test is to run the EM
algorithm from multiple, dispersed starting values and check their convergence. In a
well behaved likelihood, we will see all of these chains converging to the same value,
and reasonably conclude that this is the likely global maximum. On the other hand,
we might see our EM chain converging to multiple locations. The algorithm may also
wander around portions of the parameter space that are not fully identified, such as
a ridge of equal likelihood, as would happen for example, if the same variable were
accidentally included in the imputation model twice.

Amelia includes a diagnostic to run the EM chain from multiple starting values
that are overdispersed from the estimated maximum. The overdispersion diagnostic
will display a graph of the paths of each chain. Since these chains move through
spaces that are in an extremely high number of dimensions and can not be graphically
displayed, the diagnostic reduces the dimensionality of the EM paths by showing
the paths relative to the largest principle components of the final mode(s) that are
reached. Users can choose between graphing the movement over the two largest
principal components, or more simply the largest dimension with time (iteration
number) on the x-axis. The number of EM chains can also be adjusted. Once the
diagnostic draws the graph, the user can visually inspect the results to check that
all chains convergence to the same point.

In one dimension, the diagnostic plots movement of the chain on the y-axis and
time, in the form of the iteration number, on the x-axis. Figures 1 and 2 show two
examples of one dimensional plots. The first shows a well behaved likelihood, as the
starting values all converge to the same point. The black horizontal line is the point
where Amelia converges when it uses the default method for choosing the starting
values. The diagnostic takes the end point of this chain as the possible maximum
and disperses the starting values away from it to see if the chain will ever finish at
another mode. Figure 2 shows an example of how a diagnostic plot will look on
a problematic likelihood surface. A few of the iterations are ending up in vastly

17

0 5 10 15 20 25 30

0.
85

0.
90

0.
95

1.
00

1.
05

Overdispersed Start Values

Number of Iterations

La
rg

es
t P

rin
cip

le
 C

om
po

ne
nt

Convergence of original starting values

Figure 3: A plot from the overdispersion diagnostic where all EM chains are converg-
ing to the same mode, regardless of starting value. The y-axis represents movement
in the (very high dimensional) parameter space, and the x-axis represents the iter-
ation number of the chain.

different location in the parameter space. This can happen for a variety of reasons.
In this example it is a result of having two highly collinear variables included in
the imputation model. More generally, an unidentified imputation model will lead
to non-unique ML estimates (see King (1989) for a more detailed discussion of
identification and likelihoods).

This graph can also be called from R as:

> output<-amelia(data=x)

> disperse(data=x,output=output,m=5,dims=1)

where dims can be set to a value of either 1 (default) or 2, for one dimensional
and two dimensional graphs, respectively. The argument m sets the number of EM
chains to run to create the graph. In R this routine can also be called before an
amelia run has taken place, in which case output need not be declared, but any other
amelia options may be set in the same way they would be declared for the amelia
function. This allows you to check the likelihood surface before running the amelia
function.

18

0 10 20 30 40 50

2.
82

2.
84

2.
86

2.
88

2.
90

Overdispersed Start Values

Number of Iterations

La
rg

es
t P

rin
cip

le
 C

om
po

ne
nt

Convergence of original starting values

Figure 4: A problematic plot from the overdispersion diagnostic showing that EM
chains are converging to one of two different modes, depending upon the starting
value of the chain.

10 Sessions

Setting options for large datasets can take quite some time, especially with the pre-
cense of observational priors and non-linear variables. To ease this process, Amelia
includes the ability to save and load sessions. A saved session includes all options
set by the user in addition to any output information from Amelia. The session
are useful for setting large numbers of options over multiple instances of Amelia or
imputing the data multiple times with the same setup.

In AmeliaView, you can save a session by opening the ”File” menu and selecting
”Save Session.” This will open a dialog that will ask for a filename (the file extenstion
must be ”.r”). To load a saved session, simply navigate to the ”File” menu and select
”Load Session” and locate the saved session file. Note that the data file referenced
in the session file must be in the same location when attempting to load the session.
Once loaded, Amelia will set all options to those of the saved session.

You may wish to load a AmeliaView session at the R command line. To do
so, use the source command to load the session file which will add a list named
amelia.list. You can use this list as the arglist options, which takes an Amelia
output list or a session list as its argument. An example of loading a session at the
command line would be:

> source("am-session.R")

> amelia.out <- amelia(data=x,arglist=amelia.list)

In this example am-session.R is the session file and x is the dataset that corre-
sponds to the session file. At the command line, you will have to load the data into

19

−0.44 −0.42 −0.40 −0.38

0.
12

0.
14

0.
16

0.
18

Overdispersed Starting Values

First Principle Component

Se
co

nd
 P

rin
cip

le
 C

om
po

ne
nt

Figure 5: A alternate way to visualize the plot visualizing the parameter space in
two dimensions using the first two principal components of the end points of the EM
chains. The iteration number is no longer represented on the y-axis, although the
distance between iterations is marked by the distance between arrowheads on each
chain.

20

R. When provided to Amelia, the argument list will take precendence over other
arguments. For example, specifying an identification variable with idvars while
also using arglist will result in Amelia ignoring the idvars provided by the user
and refer to the idvars setting in arglist.

11 Reference

12 Menu Guide

12.1 Step 1 - Input

Figure 6: Detail for step 1 on the front page of AmeliaView.

1. Input Data Format - Pick the format for your dataset. The format you pick
will be the default format that is shown when you open the “Browse” dialog.
Currently, Amelia supports five different file formats: Comma-Separated Val-
ues (.CSV), Tab-Delimited Text (.TXT), Stata v.5-8 (.DTA), SPSS (.DAT),
and SAS Transport (.XPORT).

2. Input Data File - Enter the location of your dataset. If your file is located in
a high level directory, it might be you are trying to access for more information.

3. Summarize Data - View plots and summary statistics for the individual vari-
ables. This button will bring up a dialog box with a list of variables. Clicking
on each variable will display the summary statistics on the right. Below these
statistics, there is a “Plot Variable” button, which will show a histogram of
the variable. For data that are string or character based, AmeliaView will not
show summary statistics or plot histograms.

12.2 Step 2 - Options

1. Time Series Variable - Choose the variable that indexes time in the dataset.
If there is no time series component in your data, set it to “(none).” You must
set this option in order to access the Time Series Cross Sectional options dialog.

2. Cross Sectional Variable - Choose the variable that indexes the cross-
section. You must set this in order to access the “Set Case Priors” in the
“Priors” dialog.

21

Figure 7: Detail for step 2 on the front page of AmeliaView.

3. Variables - Becomes available after you load the data. See 12.2.1 for more
information.

4. TSCS - Becomes available after you set the Time Series variable. See 12.2.2
for more information.

5. Priors - Becomes available after you load the data. See 12.2.3 for more infor-
mation.

12.2.1 Variables Dialog

Figure 8: Detail for Variable Options dialog.

22

1. Variable Listbox - Choose the variable whose options you wish to set.

2. Variable Transformations - Choose the transformation that best normalizes
for the variable, if any exists. See 7.2 on Transformations to see how each
transformation is useful. You can also choose whether or not the variable is an
ID variable. If so, it will be left out of the imputation model, but will remain
in the dataset. This is useful for variables that have no explanatory power like
extra case identifiers.

12.2.2 Time Series Cross Sectional Dialog

Figure 9: Detail for Time-Series-Cross-Section Options dialog.

1. Polynomials of Time - This option, if activated, will have Amelia use trends
of time as a additional condition for fitting the missing data. The higher the
level of polynomial will allow more variation in the trend structure, yet it will
take more degrees of freedom to estimate.

2. Interact with Cross-Section - Interacting this with the cross section is way
of allowing the trend of time to vary across cases as well. Using a 0 level
polynomial and interacting with the cross section is the equivalent of using a
fixed effects. For more information see 7.4 above.

3. Variable Listbox - Choose the variable whose lag you would like to set.
condition for fitting the missing data. The higher the level of polynomial will

23

allow more variation in the trend structure, yet it will take more degrees of
freedom to estimate.

4. Interact with Cross-Section - Interacting this with the cross section is way
of allowing the trend of time to vary across cases as well. Using a 0 level
polynomial and interacting with the cross section is the equivalent of using a
fixed effects. For more information see 7.4 above.

5. Variable Listbox - Choose the variable whose lag you would like to set.

6. Lag Settings - Choose to include lags and leads in the data set to handle the
effects of time. See 7.4 above.

12.2.3 Priors Dialog

Figure 10: Detail for Priors Options dialog.

1. Empirical Prior - A prior that adds observations to your data in order to
shrink the covariances. A useful place to start is around 5% of the total
observations in the dataset.

2. Variable Listbox - Select the variable for which you want to set a range
prior.

24

3. Range Prior NOT CURRENTLY IMPLEMENTED - If you have a
prior belief about the range of possible values that a variable can take, enter
the lower and upper bound.

4. Set Case Priors NOT CURRENTLY IMPLEMENTED - Tell Amelia
which cases are similar. See ?? for more details about case priors.

5. Set Observational Priors NOT CURRENTLY IMPLEMENTED -
Set prior beliefs about ranges for individual missing observations. For more
information about observational priors, see 8.2.

12.2.4 Case Priors NOT CURRENTLY IMPLEMENTED

Figure 11: Detail for Case Priors dialog.

1. Case Names - The row and column name for each button indicate the re-
lationship that the button controls. For instance, the top-left button in the
“Burkina Faso” row and the “Burundi” column; thus, the setting on this
button will indicate the strength of the similarity prior between these two
cross-sections.

2. Buttons - Toggling the buttons will change the setting for each case. The
higher the number on the button, the stronger the indicated relationship is
believed to be. Find the column of the first country and then follow it down
to the row of the similar country. Press the button to raise the level similarity
from 0 to 1 to 2 to 3. You can reset the case priors by hitting the “Reset All”
button in the top left corner.

25

3. OK - Close the window and save any changes.

4. Cancel - Close the window and discard any changes.

5. Reset All - Sets all case priors to the default 0 setting.

12.2.5 Observational Priors NOT CURRENTLY IMPLEMENTED

Figure 12: Detail for Observational Priors dialog

1. Missing Cell - A missing value in the data. Click on the cell to enter your
prior beliefs about the value. Enter your prior beliefs as a range of possible
values as with a comma in between (e.g. 0,10000).

2. Observed Cell - Non-missing values cannot be selected since there is no way
to incorporate a prior about an observed value.

12.3 Step 3 - Output

Figure 13: Detail for step 3 on the front page of AmeliaView.

26

1. Output Data Format - Choose the format of output data. If you would
like to not save any output data sets (if you wanted, for instance, to simply
look at diagnostics), set this option to “(no save).” Currently, you can save
the output data as: Comma Separated Values (.CSV), Tab Delimited Text
(.TXT), or Stata (.DTA).

2. Name of Imputed Datasets - Enter the prefix for the output data files. If
you set this to “mydata”, your output files will be mydata1.csv, mydata2.csv...

etc. Try to keep this name short as some operating systems have a difficult
time reading long filenames.

3. Number of Imputed Datasets - Set the number of imputations you would
like. In most cases, 5 will be enough to make accurate predictions about the
means and variances.

4. Run Amelia - Runs the Amelia procedure on the input data. A dialog will
open marking the progress of Amelia. Once it is finished, it will tell you that
you can close the dialog. If an error message appears, follow its instructions;
this usually involves closing the dialog, resetting the options, and running the
procedure again.

5. Diagnostics - Post-imputation diagnostics. The only currently available graph
compares the densities of the observed data to the mean imputation across the
m imputed datasets.

12.3.1 Diagnostics Dialog

Figure 14: Detail for Diagnostics dialog.

27

1. Compare Plots - This will display the relative densities of the observed (red)
and imputed (black) data. The density of the imputed values are the average
imputations across all of the imputed datasets.

2. Overimpute - This will run Amelia on the full data with one cell of the
chosen variable artificially set to missing and then check the result of that
imputation against the truth. The resulting plot will plot average imputations
against true values along with 90% confidence intervals. These are plotted
over a y = x line for visual inspection of the imputation model.

3. Number of overdispersions - When running the overdispersion diagnostic,
you need to run the imputation algorithm from several overdispersed starting
points in order to get a clear idea of how the chain are converging. Enter the
number of imputations here.

4. Number of dimensions - The overdispersion diagnostic must reduce the
dimensionality of the paths of the imputation algorithm to either one or two
dimensions due to graphical restraints.

5. Overdisperse - Run overdispersion diagnostic to visually inspect the con-
vergence of the Amelia algorithm from multiple start values that are drawn
randomly.

References

Honaker, James and Gary King. 2006. “What to do About Missing Values in Time
Series Cross-Section Data.”.

King, Gary, James Honaker, Anne Joseph and Kenneth Scheve. 2001. “An-
alyzing Incomplete Political Science Data: An Alternative Algorithm for
Multiple Imputation.” American Political Science Review 95(1, March):49–69.
http://gking.harvard.edu/files/abs/evil-abs.shtml.

King, Gary, Michael Tomz and Jason Wittenberg. 2000. “Making the
Most of Statistical Analyses: Improving Interpretation and Presen-
tation.” American Journal of Political Science 44(2, April):341–355.
http://gking.harvard.edu/files/abs/making-abs.shtml.

28

	Introduction
	What Amelia Does
	Versions of Amelia
	Installation and Updates
	Windows --- AmeliaView
	Windows --- Amelia II for R
	Linux

	Program Overview
	AmeliaView
	Amelia for R

	Data Input and Output
	AmeliaView
	Amelia for R

	Options
	Screen Output
	Transformations of Variables
	Ordinal
	Nominal
	Natural Log
	Square Root
	Logistic

	Identification Variables
	Time Series, or Time Series Cross Sectional Data

	Setting Priors
	Empirical (Ridge) Priors for High Missingness, Small n's, or Large Correlations
	Observation-level priors

	Diagnostics
	Compare
	Overimpute
	Overdispersed Starting Values

	Sessions
	Reference
	Menu Guide
	Step 1 - Input
	Step 2 - Options
	Variables Dialog
	Time Series Cross Sectional Dialog
	Priors Dialog
	Case Priors NOT CURRENTLY IMPLEMENTED
	Observational Priors NOT CURRENTLY IMPLEMENTED

	Step 3 - Output
	Diagnostics Dialog

