
JudgeIt II: A Program for Evaluating Electoral Systems

and Redistricting Plans1

Andrew Gelman Gary King2 Andrew C. Thomas3

Version 1.1.4
August 9, 2007

1Available from http://GKing.Harvard.edu/judgeit.
2David Florence Professor of Government, Harvard University (Institute for Quantitative Social Sci-

ence, 1737 Cambridge Street, Harvard University, Cambridge MA 02138; http://GKing.Harvard.Edu,
King@Harvard.Edu, (617) 495-2027).

3PhD Candidate, Department of Statistics, and Graduate Associate, Institute for Quantitative Social
Science, Harvard University. http://www.fas.harvard.edu/∼acthomas/; acthomas@fas.harvard.edu.

Contents

1 Introduction 2

2 Installation Instructions and Requirements 2
2.1 Case Syntax . 2

3 Usage Overview 3

4 Formatting Data Sets 3

5 Included Data Sets 3

6 Step 1: Create a JudgeIt object 4
6.1 Other Options . 4

6.1.1 Selecting a data subset . 4
6.1.2 Automatic Use of Previous Year’s Results 4
6.1.3 Redistricting . 5
6.1.4 Uncontested Districts . 5
6.1.5 Simulation Parameters . 5
6.1.6 Applying District Weights: Some Count More than Others 5

7 Step 2: Conduct Analyses 5
7.1 Evaluation . 6
7.2 Prediction . 6
7.3 Counterfactual Evaluation . 6
7.4 Using new.covariates to recode data . 6
7.5 distreport: Examine the estimation . 6
7.6 seats: Given a vote share, determine the seat share 7

7.6.1 Plotting a seats-votes curve . 7
7.7 prob: Given a vote share, determine the probability of an electoral win 7
7.8 winprob: Given a vote share or deviation, determine the probability that the seat

share is within a particular margin . 7
7.9 svsum: Determine partisan bias and responsiveness 7
7.10 winvote: Given a seat share, determine the total vote share required to attain it . 8
7.11 voting.power: Determine the power that distinct groups have in changing an election

result . 8

8 Further JudgeIt output options 8
8.1 Plotting output to file . 8
8.2 System summaries . 8

9 Accessing Raw judgeit.object Data 8

A Several demos 9

1

1 Introduction

JudgeIt II brings the analytical routines of the original version of JudgeIt to the R Project
for Statistical Computing, while also greatly simplifying its interface and control system.1 The
methods implemented in this software were developed in Gelman and King (1990b,a); ?, 1994);
King and Gelman (1991); Gelman, Katz and King (2004).

JudgeIt allows a user to construct a model of a two-party election system over multiple
election cycles, derive quantities of interest about the system through statistical estimation and
simulation, and produce output summary statistics and graphical plots of those quantities. Some
of the quantities of interest are based on partisan symmetry as a standard of fairness in legislative
redistricting, such as partisan bias as the deviation from fairness and electoral responsiveness which
indexes how party control of legislative seats responds to changes in a party’s success at the polls
even in a fair system. (A uniform consensus has existed in the academic literature since at least
King and Browning (1987) on partisan symmetry as a standard for fairness, and even the U.S.
Supreme Court now appears to agree; see Grofman and King 2007.) JudgeIt also estimates
and graphs seats-votes curves, make specific vote and seat predictions for individual districts, and
calculate numerous other relevant statistics.

The program can evaluate electoral systems in three general situations:

1. When an election already has taken place,

2. When an election has not been held yet but a new redistricting plan (or plans) has been
proposed or implemented, and

3. When you wish to assess what an election would have been like if held under certain specified
counterfactual conditions (such as if no minority districts had been drawn, or term limitations
had prevented incumbents from running for reelection).

For bias, responsiveness, seats-votes curves, and virtually every other estimate, JudgeIt pro-
vides quantitative estimates of uncertainty (i.e., standard errors or confidence intervals). This are
recognized as essential by social scientists and even the Supreme Court (see Castaneda v. Partida,
430 U.S. 482, 1977, and Hazelwood School District v. United States, 433 U.S. 299, 1977).

2 Installation Instructions and Requirements

As this version of JudgeIt has been built as a package for the mathematical software R, it is
necessary to install this software before beginning.

The latest version of R is available for free from http://www.r-project.org. After installation,
retrieve the JudgeIt package through the following command:

> install.packages("JudgeIt", repos = "http://gking.harvard.edu")

To use the commands within, type

> library(JudgeIt)

JudgeIt requires the R package mvtnorm to function properly, and will load it automatically
when needed.

2.1 Case Syntax

In all instances, the stylized JudgeIt refers to the software; the mixed case JudgeIt refers explic-
itly to the library name; and the lower case judgeit is used for the primary analysis function and
any contained terms, such as judgeit.object.

1The original version of JudgeIt, written by Gary King and Andrew Gelman in versions available for DOS and
in the language Gauss, is still available at http://gking.harvard.edu/judgeit/judgeitI.

2

http://www.r-project.org
http://gking.harvard.edu/judgeit/judgeitI

3 Usage Overview

JudgeIt can conduct three types of analyses:

1. Evaluation, wherein the information gathered from one year’s elections is applied to itself.
This is done to suggest the underlying structure of an electoral system.

2. Prediction, which takes a set of observed covariates and predicts the outcome of an election.
This can be done with or without the previous election’s results and covariates included
explicitly.

3. Counterfactual analysis, which estimates the results if the election had been run under dif-
ferent circumstances (i.e. with different predictors.)

The JudgeIt interface requires only one command to perform analyses, called judgeit . The
standard auxiliary functions summary, print and plot have been adapted to display the object
that results.

Two steps are required to perform a JudgeIt analysis: election data must be loaded into a
JudgeIt object, and the routine for analysis must be specified along with its required options.

4 Formatting Data Sets

JudgeIt requires each election to be reported in an object of type data.frame. This is natural if
your data is in a comma-separated or tab-delimited file, since operations like

data <- read.csv("ohio.csv")
data2 <- read.table("cali98.txt")

will automatically put these tables into the data frame format. It is important to make sure that
each variable is labeled before using it in the function judgeit , either by making the first line of
the data file contain variable names, or by assigning them afterwards. For example:

data <- read.csv("ohio.csv",header=FALSE)
colnames(data) <- c("district","vote","inc")

Since most JudgeIt analyses will involve a series of consecutive elections, judgeit accepts such
a series as an object of type list. Suppose we have three elections, say Ohio’s State Legislature
in 1992, 1994 and 1996, and that each election is stored in a data frame as above. To integrate the
separate data frames, use the command elections <- list(oh1992,oh1994,oh1996) which will
create an object named “elections”. Each year’s election data must use the same variable names,
so that JudgeIt can recognize the same quantity across different elections.

5 Included Data Sets

JudgeIt comes with data set ICSPR 6311, coded as house6311, containing the results for the
U.S. House of Representatives from 1896 through 1992. It is formatted as a list of 49 data frames,
each named for their election year, and containing six vectors:

• STATE, a numerical ICPSR state code for the state containing the district;

• DIST, a numerical indicator for the number of the district within the state;

• INC, an incumbency indicator, −1 for Republican and 1 for Democrat;

• VOTE, the share of the vote received by the Democratic candidate;

• TURNOUT, the number of votes for the two candidates combined, and

• DELSOUTH, an indicator for whether the district is located in the South.

3

6 Step 1: Create a JudgeIt object

Now that there is an object containing the elections we wish to analyze, we can load this object
into JudgeIt . To do this:

judg.obj <-
judgeit(model.formula=vote ~ predictor1 + predictor2 + modfun(vote),

data=elections, vote.formula=cbind(turnout,eligible)~seats, ...) }

where the ellipsis “...” represents other possible commands used by the R command model.frame.

Model Formula

The model formula, model.formula, specifies the system’s outcome variable — the proportion of
the two-party vote received by the candidate for a specified party — and any desired predictors,
such as incumbency status. The predictor names must be the same as the variable names within
the data list (referred to here as elections.)

Functions can also be applied to the variables within the formula. For example, if we wish to
create an indicator for whether a win is decisive (for example, the winner more than triples the
opponent’s votes), we first create such a function,

modfun <- function(arg) -1*(arg<0.25)+1*(arg>0.75)

and then use it in the formula. For example, with data set house6311 this formula works:
model.formula=VOTE~INC+modfun(VOTE).

Voter Formula

We use the voter formula, vote.formula, to indicate the number of actual voters (also known as
the turnout), the number of eligible voters, and/or the number of seats each district elects to the
main assembly. If this is omitted, the number of seats is assumed to be one per district and the
turnout is assumed to be equal in all districts.

For example,

• vote.formula=cbind(turnout,eligible)~seats specifies all three quantities.

• vote.formula=cbind(turnout,eligible)~1 specifies turnout and eligible voters, and one
seat per district.

• vote.formula=turnout~1 specifies turnout. The number of eligible voters is ignored, and
seats are specified at one per district.

• vote.formula=~1 is the default option.

6.1 Other Options

6.1.1 Selecting a data subset

For example, the data set house6311 contains an indicator DELSOUTH, which is 1 if a district is
located in the south and 0 otherwise. To perform analyses on non-southern districts only, initialize
a JudgeIt object (in this example, jud.ob) with the expression

jud.ob <- judgeit(...,subset=DELSOUTH==0,...,data=house6311)

6.1.2 Automatic Use of Previous Year’s Results

The results of a previous year’s election is often among the best predictors of a current contest,
and they are included by default. To remove this option, include the option use.last.votes=F in
your judgeit statement.

4

6.1.3 Redistricting

At some point during a state’s existence, the electoral map is redrawn to adjust for changes in the
demographics of the districts. Specifying whether the districts in one election are identical to the
previous one are vital to an accurate representation of the system.

By default, judgeit assumes that if two consecutive years have the same number of districts
in the map, then no redistricting has taken place.

To set a redistricting occurrence manually, judgeit accepts as an option same.districts,
which indicates whether the previous election used the same districting plan. In many states in
the American system, the easiest way to do this is to have a variable specifying the election years
and note whether the year ends in 2 (year %% 10 == 2). For other situations, you will need to
add a specially coded variable to the data frame and set same.districts to it.

6.1.4 Uncontested Districts

JudgeIt includes several routines to deal with uncontested districts. By default JudgeIt assumes
that a vote proportion below 0.05 or above 0.95 indicates an uncontested district and are imputed;
these levels can be changes using the options uncontested.low and uncontested.high.

The option uncontesteds.method indicates which method is to be used to deal with districts
tagged as uncontested:

• "default", which replaces uncontested values with assumed vote totals specified by uncon-
tested.low.new and uncontested.high.new (default values are 25% and 75%);

• "impute", which uses the behaviour of contested districts to estimate unknown vote shares,

• "remove", which simply eliminates uncontested districts from the analysis, or

• "nochange" which leaves the vote variable as entered.

6.1.5 Simulation Parameters

JudgeIt analyzes election systems by simulating a number of hypothetical draws of the election
of interest, and computing quantities of interest from these simulations. The default number
of simulated elections is 1000; to change this, include the option simulations in the judgeit
command.

6.1.6 Applying District Weights: Some Count More than Others

Districts may have different influence than others when determining the parameters of a system.
To reflect this, we can assign a weight parameter to command judgeit :

• weight=constant (default) in which all districts have equal weight;

• weight=turnout, corresponding to the two-party votes cast in each district;

• weight=eligible.voters, corresponding to the total number of eligible voters in each dis-
trict, or

• weight=seats, the number of seats in each district.

This will have two distinct impacts on the analysis. First, in the linear modelling, each district
will have a variance equal to a constant (σ2) times the specified weight. Second, the mean vote will
be calculated with respect to this weight; a constant weight will yield the average district vote,
while setting the weight according to turnout will yield the grand average or “popular” vote.

7 Step 2: Conduct Analyses

Once an election system has been loaded into a JudgeIt object, quantities of interest can be
simulated. There are three types of analyses than can be performed:

5

7.1 Evaluation

The default setting of JudgeIt for analysis, evaluation mode examines an election under the actual
conditions that took place. Under these conditions, the systematic error component in simulation
(the amount estimated by the parameter λ) is identical, and total error estimates are therefore
smaller.

By default, all substantive outputs from judgeit use evaluation mode. For example, using a
previously created JudgeIt object judgeit.object, we can obtain a seats-votes curve using the
command

plot(judgeit(routine="seats",judgeit.object=judgeit.object))

7.2 Prediction

Prediction takes the information gleaned from one election and uses it to forecast the results of a
new election. In this case, since the new election hasn’t taken place, the systematic error component
is inestimable, and the total error component is generated.

To enable predictive mode, add the option predict=T to a judgeit analysis command. To spec-
ify new covariates for this election, add the option new.covariates to specify the new conditions,
or use new.covariate.matrix to draw a new electoral map entirely.

7.3 Counterfactual Evaluation

This option supposes what might have happened if an election were rerun under different circum-
stances. The systematic error component is once again held constant to reflect that this is the
same “voting apparatus” as was used originally.

To enable a counterfactual analysis, specify new covariates by adding the option new.covariates
and changing the relevant values.

7.4 Using new.covariates to recode data

In order to recode the data for counterfactual analysis or prediction, the option new.predictors
must be added to a judgeit analysis command.

As an example, suppose we wish to find out what were happened if term limits were imposed
and no incumbent could run for re-election, and that the incumbency indicator is labelled INC.
The option

new.covariates=list("INC",0)

would instruct each routine to use this counterfactual data.
Suppose it came to pass that, instead, a group of representatives were forced to resign shortly

before the election. If the new incumbency indicators are stored in a variable new.incs,

new.covariates=list("INC",new.incs)

would make that substitution. Make sure, however, that the substitution variable has the same
number of districts as the model for that year; to confirm this, run the command

summary(judgeit.object,year).

7.5 distreport: Examine the estimation

The output of this routine is a reckoning of each district, including the observed and hypothetical
vote shares, the standard deviation of the hypothetical estimate, and the probability that a voter
in this district would be able to change the outcome of the entire election by reversing their vote.

6

7.6 seats: Given a vote share, determine the seat share

This is the basic tool used to determine the conversion between seats and votes in this electoral
system.

Example: judgeit (routine=‘‘seats",judgeit.object=j.ob) will produce estimations
and errors for the fraction of seats received using the default options: in particular, in the fi-
nal election in the system, at various values between 0.45 and 0.55.

Example: judgeit (routine="seats", judgeit.object=j.ob,voterange=c(0.1,0.9)) will
now produce estimates over a much wider vote range. Note that the farther we get from the actual
outcome, the less reliable the model will become.

7.6.1 Plotting a seats-votes curve

If the output in a JudgeIt object was produced by seats, the plot() command will recognize
this and produce a seats-votes curve.

7.7 prob: Given a vote share, determine the probability of an electoral
win

As above, but replace “seats” with “likelihood of a majority for party 1”.
Example: judgeit(routine="prob",judgeit.object=j.ob) will produce estimations and

errors for the fraction of seats received using the default options: in particular, in the final election
in the system, at various values between 0.45 and 0.55.

Example: judgeit(routine="prob",judgeit.object=j.ob,voterange=c(0.1,0.9)) will
now produce estimates over a much wider vote range. Note that the farther we get from the
actual outcome, the less reliable the model will become.

7.8 winprob: Given a vote share or deviation, determine the probability
that the seat share is within a particular margin

Example: judgeit(routine="winprob",judgeit.object=j.ob) does the default: For the vote
as it is, what is the probability that the seat share will be between the default range of 0.45 to
0.55?

Example:

judgeit(routine="winprob",judgeit.object=j.ob,
voteorshift="shift",voteshares=-0.05)

determines what the probability is that the seat share will be between the default range of 0.45 to
0.55, given that the resulting vote share was 5 points lower than actually experienced.

Example:

judgeit(routine="winprob",judgeit.object=j.ob,
voterange=c(0,0.5),voteorshift="vote",voteshares=0.5)

determines what the probability is that the seat share will be below 50 percent, given that the
resulting vote share was 50 percent for each party.

7.9 svsum: Determine partisan bias and responsiveness

The title says it all. The output is a 4-by-2 table containing the estimates and errors for four
quantities: Partisan bias at an even vote, both instantaneous and averaged over a 10-point swing,
and responsiveness at the midpoint and the observed vote percentage.

Example:

judgeit(routine="svsum",judgeit.object=j.ob,year=which(elecyears==1976))

will output those properties for the election held in 1976. (This assumes there is a variable called
elecyears which encodes the calendar years of each election.)

7

7.10 winvote: Given a seat share, determine the total vote share re-
quired to attain it

The reverse procedure of seats. Example:

judgeit(routine="winvote", judgeit.object=j.ob,winvote=0.7)

outputs the expected vote percentage needed to get 70% of the seats.

7.11 voting.power: Determine the power that distinct groups have in
changing an election result

Suppose there exists a distinct number of groups spread across the districts of an electoral map
(by race, language, or some other delineation.) The routine voting.power calculates the power of
an electoral group by estimating the probability that a vote from this group has in changing the
result of an election, by flipping the outcome of districts in which they live.

Example:

judgeit(routine="voting.power", judgeit.object=j.ob,voting.groups=matrix1,all.groups=matrix2)

matrix1 represents the voters in each group within each district; matrix2 represents the eligible
voters respectively. Each must have the same number of rows as there are districts in the system.

8 Further JudgeIt output options

8.1 Plotting output to file

JudgeIt outputs can be printed to a PNG graphics file by giving a file name in the plot command,
like so:

plot(jud.obj,filename="txseatsvotes")

producing the file txseatsvotes.png.

8.2 System summaries

Using the command summary() on a JudgeIt object will give one of two results. Without a year
given, the output will be the number of years, as well as the values of model parameters λ and σ.

With a year given, a report of the vote outcomes, predictors, seats and populations will be the
output.

9 Accessing Raw judgeit.object Data

All data are stored in an object of class judgeit . If desired, the user can access each component
within. Here is a list of components and their attributes:

• covars is a list of data frames comprising the predictors for each election in the system. So
judgeit.object$covars[[25]] is a data frame with the covariates from the 25th election.

• voteshare is a list of vectors comprising the vote shares for each election in the system. So
judgeit.object$voteshare[[25]] is a vector of the results of the 25th election.

• turnout,elgvotes,seats are lists of vectors comprising the actual turnout, the number of
eligible voters, and the seats per district in the system for each election.

• fullrow is a list of vectors containing those rows whose primary elements (covariates, vote
shares, eligible and actual voters and seats) contain complete data.

• uncL,uncLR,uncU,uncUR are the uncontested election detection thresholds and imputations
as listed above.

8

• svexpected.value.only is the value of expected.value.only as given above.

• simulations is the number of simulations conducted by JudgeIt during each analysis.

• weight is the option selected by the user to indicate what weights should be used in the
linear model, as described above.

• distweights is a list of the actual values of these weights.

• covarsnew is a list of data frames of counterfactual or future predictors as manipulated by
the option new.covariates. It must have the same data type in each column as covars
though not necessarily the same number of rows.

• same.dists is a vector indicating whether the previous election’s district map is identical to
the current one, as described above.

• output contains the output of the last analytical routine, and is displayed with the command
print(JudgeIt.object).

• outputyear, outputclass indicate the year and type of the last analysis conducted. These
are used mainly in plot(judgeit.object).

• beta,vc are the estimates given by the linear model for the system for the coefficients of the
covariates and their covariance matrix.

• sigma,lambda,sind,lind are, respectively, the mean and year-by-year estimates of the stan-
dard error and systematic error fraction of the system.

• years is a vector of the names of each election variable in the inputted data frame list. In
the case of house6311, this is a vector of the election years between 1896 and 1992.

A Several demos

After loading the JudgeIt library, you may run these commands to check that it’s in working order.
In addition, the demonstrations seatsdemo, probdemo, distreportdemo and svsumdemo are

available through the command demo.

data(house6311)
#columns: STATE,DIST,INC,VOTE,TURNOUT,DELSOUTH

#operators:
unc <- function(inp) -1*(inp<0.05)+1*(inp>0.95)

years <- seq (1896,1992,by=2)
same.dists <- 1*(yrs%%10!=2)

j.ob <- judgeit(model.formula=VOTE~unc(VOTE)+INC,vote.formula=TURNOUT~1,
data=house6311,
use.last.votes=T,subset=DELSOUTH==0,same.d=same.dists)

summary(j.ob)
summary(j.ob,which(house6311$years==1942))

j.ob <- judgeit(routine="distreport",judgeit.object=j.ob,year=which(years==1962),new.covariates=list("INC",0),vote.range=c(0.1,0.9))
j.ob

#seats-votes curve
j.ob <- judgeit(routine="seats",jud=j.ob,year=which(years==1986),vote.range=c(0.2,0.8))
plot(j.ob)

9

Multivariate Normal Generation

The routine used to generate multivariate normal random variables is taken explicitly from the R
library MASS.

References

Gelman, Andrew and Gary King. 1990a. “Estimating Incumbency Advantage With-
out Bias.” American Journal of Political Science 34(4, November):1142–1164.
http://gking.harvard.edu/files/abs/inc-abs.shtml.

Gelman, Andrew and Gary King. 1990b. “Estimating the Electoral Consequences of Legisla-
tive Redistricting.” Journal of the American Statistical Association 85(410, June):274–282.
http://gking.harvard.edu/files/abs/svstat-abs.shtml.

Gelman, Andrew and Gary King. 1994. “Enhancing Democracy Through Legisla-
tive Redistricting.” American Political Science Review 88(3, September):541–559.
http://gking.harvard.edu/files/abs/red-abs.shtml.

Gelman, Andrew, Jonathan Katz and Gary King. 2004. Rethinking the Vote: The
Politics and Prospects of American Electoreal Reform. New York: Oxford Univer-
sity Press chapter Chapter 5, Empirically Evaluating the Electoral College, pp. 75–88.
http://gking.harvard.edu/files/abs/rethink-abs.shtml.

Grofman, Bernard and Gary King. 2007. “The Future of Partisan Symmetry as a Judicial Test
for Partisan Gerrymandering after LULAC v. Perry.” Election Law Journal 6(1, January):2–35.
http://gking.harvard.edu/files/abs/jp-abs.shtml.

King, Gary and Andrew Gelman. 1991. “Systemic Consequences of Incumbency Advan-
tage in the U.S. House.” American Journal of Political Science 35(1, February):110–138.
http://gking.harvard.edu/files/abs/sysconseq-abs.shtml.

King, Gary and Robert X Browning. 1987. “Democratic Representation and Partisan Bias
in Congressional Elections.” American Political Science Review 81(4, December):1252–1273.
http://gking.harvard.edu/files/abs/sv-abs.shtml.

10

	Introduction
	Installation Instructions and Requirements
	Case Syntax

	Usage Overview
	Formatting Data Sets
	Included Data Sets
	Step 1: Create a JudgeIt object
	Other Options
	Selecting a data subset
	Automatic Use of Previous Year's Results
	Redistricting
	Uncontested Districts
	Simulation Parameters
	Applying District Weights: Some Count More than Others

	Step 2: Conduct Analyses
	Evaluation
	Prediction
	Counterfactual Evaluation
	Using new.covariates to recode data
	distreport: Examine the estimation
	seats: Given a vote share, determine the seat share
	Plotting a seats-votes curve

	prob: Given a vote share, determine the probability of an electoral win
	winprob: Given a vote share or deviation, determine the probability that the seat share is within a particular margin
	svsum: Determine partisan bias and responsiveness
	winvote: Given a seat share, determine the total vote share required to attain it
	voting.power: Determine the power that distinct groups have in changing an election result

	Further JudgeIt output options
	Plotting output to file
	System summaries

	Accessing Raw judgeit.object Data
	Several demos

