VA: Software for Analyzing Verbal Autopsy Data!

Gary King? Andrew C. Thomas; acthomacs@fas.harvard.edu).

Version 0.0-2
September 11, 2006

! Available from http://GKing.Harvard.Edu/va.

2David Florence Professor of Government, Harvard University (Institute for Quantitative Social Sci-
ence, 1737 Cambridge Street, Harvard University, Cambridge MA 02138; http://GKing.Harvard.Edu,
King@Harvard.Edu, (617) 495-2027).

Contents

1__Introductionl 2
21 Tation I ons 9
3 eor 2
4 Usage Overview| 2
[Formatting Data Sets| 2
|6 Step 1: Create a Judgem object| 3
6.1 Other Options| e 4
[6.1.1 Selecting a data subset|. 000 4

612 Automatic Use of Previous Year’s Resultd 4

6.1.3 Redistricting] 4

6.1.4 Uncontested Districtsl 4

6.1.5 Withholding Preliminary Analysis| 4

6.1.6 Simulation parameters|o oo oo 4

6.1.7 Weight]. o 5

6.2 xamples| . . .o .)
[7_Step 2: Conduct Analyses| 5
. 1 b)

.2 distreport: Examine the estimation|. o000)

7.3 seats: Given a vote share, determine the seat share| 5
[7.3.1 Plotting a seats-votes curvel Lo 6

[7.4 prob: Given a vote share, determine the probability of an electoral win|. 6
[7.5 winprob: Given a vote share or deviation, determine the probability that the seat |

| share is within a particular margin| oo 0oL 6
[7.6 svsum: Determine partisan bias and responsiveness| 6
7.7 winvote: Given a seat share, determine the total vote share required to attain it| 6
7.8 voting.power: Determine the power that distinct groups have in changing an election |
L resulll . o e e 6
I8 FKurther Judgem output options| 6
8.1 Plotting output to file| oo 6
8.2 System summaries| e e 7
[0 Referencesl 7
IA_Several demos| 7

1 Introduction

Judgem brings the analytical routines of Judgelt, the electoral analysis software by Gary King and
Andrew Gelman, to the modern R programming interface while highly simplifying its interface
and control system. It also implements new research produced since the original version of the
software.

2 Installation Instructions

If you haven’t downloaded the source distribution, do so. Once you have it, Beginning with the
source distribution for Judgem, enter the following command into your favorite Terminal program:

R CMD INSTALL judgem

This will install the package into your version of R. To use the commands within, type

>library(judgem)

Note that judgem requires package mvtnorm to function properly.

3 Theory

See instructions for Judgeit to determine the model. More to come.

4 Usage Overview
There are three general types of analyses Judgem can conduct:

1. Evaluation, wherein the information gathered from one year’s elections is applied to itself.
This is done to suggest the underlying structure of an electoral system.

2. Prediction, which takes a set of observed covariates and predicts the outcome of an election.
This can be done with or without the previous election’s results and covariates included.

3. Counterfactual analysis, which estimates the results if the election had been run under dif-
ferent circumstances (i.e. with different predictors.)

The Judgem interface requires only one command to perform analyses, called (appropriately
enough) judgem. The standard auxiliary functions summary, print and plot have been adapted
to display the analysis as neatly as possible as well.

5 Formatting Data Sets

Judgem requires each election to be reported in the data.frame type. This is natural if your data
is in a comma-separated or tab-delimited file, since the functions

data <- read.csv("ohio.csv")

data2 <- read.table("cali98.txt")

automatically output data frames. It is important to make sure that each variable is labeled
before using it in judgem, either by making the first line of the data file contain variable names, or
by assigning them afterwards like so:

data <- read.csv("ohio.csv",header=FALSE)

colnames(data) <- c("district","vote","inc")

Since most Judgem analyses will involve a series of consecutive elections, judgem accepts such
a series as an object of type list. Suppose we have three elections, say Ohio’s State Legislature
in 1992, 1994 and 1996, and that each election is stored in a data frame as above. To integrate
them into one, use the command

elections <- 1list(oh1992,0h1994,0h1996)
which will create the object (appropriately) named “elections”.

It is highly important that each year’s election data use the same variable names, so that
Judgem can recognize the same quantity across different elections.

6 Step 1: Create a Judgem object

Now that there is an object containing the elections we wish to analyze, we can load this object
into Judgem in order to perform preliminary analyses and light scrutiny.
To do this, the command takes the following form

judg.obj <-
judgem(modelform=vote~predictorl+predictor2+modfun(vote),
data=elections,
voteform=cbind(turnout,eligible) “seats,

o))

where the ellipsis “...”

represents other possible commands.

Model Formula

The model formula specifies the system’s outcome variable - the share of the two-party vote received
by the candidate for a specified party - and any desired predictors such as incumbency. The
predictor names must be the same as the variable names within the data list (referred to here as
elections.)

It is also possible to apply functions to these predictors within the formula. For example, if we
wish to create an indicator for whether a win is decisive (for example, the winner more than triples
the opponent’s votes), we first create such a function,

modfun <- function(arg) -1*(arg<0.25)+1x(arg>0.75),
and then make reference to it as in the above example.

One example that will work with the data set house6311 is the formula

modelform=VOTE INC+modfun(VOTE)

Voter Formula

We use the voter formula to indicate the number of actual voters (or the turnout), the number
of eligible voters, and/or the number of seats each district elects to the main assembly. If this is
omitted, the number of seats is assumed to be one per district and the turnout is assumed to be
equal in all districts.

Several examples:

e voteform=cbind(turnout,eligible) seats specifies all three quantities.

e voteform=cbind(turnout,eligible) 1 specifies turnout and eligible voters, and one seat
per district.

e voteform=turnout 1 specifies turnout. The number of eligible voters is ignored, and seats
are specified at one per district.

e voteform= 1 does nothing. Please refrain from entering this command.

6.1 Other Options
6.1.1 Selecting a data subset

As Judgem relies partly on the equation notation of R to arrange inputted data, the option subset
is available to it.

For example, the data set house6311 contains an indicator DELSOUTH, which highlights whether
a district is located in the south. To perform analyses on non-southern districts only, initialize a
Judgem object with the expression

judgem(. . .,subset=DELSQUTH==0, . ..,data=house6311

6.1.2 Automatic Use of Previous Year’s Results

The results of a previous year’s election are among the best predictors of a current contest. To
include these automatically, no extra commands are required; to preclude them, include the option
use.last.votes=F in your judgem statement.

6.1.3 Redistricting

At some point during a state’s existence, the electoral map is redrawn to adjust for changes in the
demographics of the districts. Specifying whether the districts in one election are identical to the
previous one are vital to an accurate representation of the system.

By default, judgem assumes that if two consecutive years have the same number of districts in
the map, then no redistricting has taken place.

To set a redistricting occurrence manually, judgem accepts as an option same.districts, which
indicates whether the previous election used the same districting plan. In the American system,
the easiest way to do this is to have a variable specifying the election years (a good thing to have
anyway) and note whether the year ends in 2 (year %% 10 == 2).

6.1.4 Uncontested Districts

Judgem includes several routines to deal with uncontested districts. The model assumes that a
vote share below 5% or above 95% indicates an uncontested district; these levels can be changes
using the options uncons.low and uncons.high.

The option uncons.method indicates which method is to be used to deal with districts tagged
as uncontested:

e "default", which replaces uncontested values with assumed vote totals specified by uncons.low.new
and uncons.high.new (default values are 25% and 75%);

e "impute", which uses the behaviour of contested districts to estimate unknown vote shares,
e "remove", which simply eliminates uncontested districts from the analysis, or

e '"mochange".

6.1.5 Withholding Preliminary Analysis

By default, the routine judgem will conduct a preliminary analysis of the electoral system in order
to determine estimates of several properties. These include the fraction of the error which can be
considered systematic (the quantity lambda), the standard error for each vote estimate (sigma),
and the coefficients for each predictor in the linear model.

To disable this feature on initial run, specify prelim=F. The preliminary analysis will be con-
ducted automatically when a routine is chosen, or can be run at any time on a Judgem object
with the command jud.obj <- judgem (judgem.object=jud.obj.

6.1.6 Simulation parameters

Judgem analyzes election systems by simulating a number of elections and computing quantities
of interest from this simulation. These are set using options simnum and simdepth.

6.1.7 Weight

6.2 Examples
7 Step 2: Conduct Analyses

Once an election system has been loaded into a Judgem object, quantities of interest can be
simulated. At this time, we can specify the particular conditions for analysis.

e Evaluation: The default setting of Judgem analyses, evaluation examines the election as
it was. Since the parameter A estimates the systematic component of the error, simulations
hold this part constant while only changing the stochastic error component.

e Prediction: Prediction takes the information from one election and uses it to (guess what)
predict a new election’s results. The entire error is estimated, and new predictors are used
to determine the potential outcomes.

To enable the predictive mode, add the option predict=T to a judgem analysis command.
New predictors can be added as described below.

e Counterfactual evaluation: This option supposes what might have happened if an election
were rerun under different circumstances. The systematic error component is once again held
constant to reflect that this is the same “voting apparatus” being used twice.

7.1 Using new.predictors to recode data

In order to recode the data for counterfaction or prediction, the option new.predictors must be
added to a judgem analysis command.

As an example, suppose we wish to find out what were happened if term limits were imposed
and no incumbent could run for re-election, and that the incumbency indicator is labelled INC.
The option

new.predictor=list(‘‘INC’’,0)

would instruct each routine to use this counterfactual data.
Suppose it came to pass that, instead, a group of representatives were forced to resign shortly
before the election. If the new incumbency indicators are stored in a variable new.incs,

new.predictor=1list(‘‘INC’’ ,new.incs)

would make that substitution. Make sure, however, that the substitution variable has the same
number of districts as the model for that year; to confirm this, run the command summary (judgem.object,year).

7.2 distreport: Examine the estimation

The output of this routine is a reckoning of each district, including the observed and hypothetical
vote shares, the standard deviation of the hypothetical estimate, and the probability that a voter
in this district would be able to change the outcome of the entire election by reversing their vote.

7.3 seats: Given a vote share, determine the seat share

This is the basic tool used to determine the conversion between seats and votes in this electoral
system.
Example: judgem(routine=‘‘seats’’, judgem.object=j.ob) will produce estimations and
errors for the fraction of seats received using the default options: in particular, in the final election
in the system, at various values between 0.45 and 0.55.
Example: The command judgem(routine=‘‘seats’’, judgem.object=j.ob,voterange=c(0.1,0.9))
will now produce estimates over a much wider vote range. Note that the farther we get from the
actual outcome, the less reliable the model will become.

7.3.1 Plotting a seats-votes curve

If the output in a Judgem object was produced by seats, the plot() command will recognize this
and produce a seats-votes curve.

7.4 prob: Given a vote share, determine the probability of an electoral
win

As above, but replace “seats” with “likelihood of a majority for party 17.
Example: judgem(routine=‘‘prob’’, judgem.object=j.ob) will produce estimations and
errors for the fraction of seats received using the default options: in particular, in the final election
in the system, at various values between 0.45 and 0.55.
Example: The command judgem(routine=¢‘prob’’,judgem.object=j.ob,voterange=c(0.1,0.9))
will now produce estimates over a much wider vote range. Note that the farther we get from the
actual outcome, the less reliable the model will become.

7.5 winprob: Given a vote share or deviation, determine the probability
that the seat share is within a particular margin

Example: judgem(routine=‘‘winprob’’,judgem.object=j.ob) does the default: For the vote
as it is, what is the probability that the seat share will be between the default range of 0.45 to
0.557
Example: judgem(routine=°‘‘winprob’’, judgem.object=j.ob,voteorshift=°‘shift’’,voteshares=-0.(
determines what the probability is that the seat share will be between the default range of 0.45 to
0.55, given that the resulting vote share was 5 points lower than actually experienced.
Example: judgem(routine=‘‘winprob’’,judgem.object=j.ob,voterange=c(0,0.5),voteorshift="°‘vote
determines what the probability is that the seat share will be below 50 percent, given that the
resulting vote share was 50 percent for each party.

7.6 svsum: Determine partisan bias and responsiveness

The title says it all. The output is a 4-by-2 table containing the estimates and errors for four
quantities: Partisan bias at an even vote, both instantaneous and averaged over a 10-point swing,
and responsiveness at the midpoint and the observed vote percentage.

Example: judgem(routine=‘‘svsum’’, judgem.object=j.ob,year=which(elecyears==1976))
will output those properties for the election held in 1976. (This assumes there is a variable called
elecyears which encodes the calendar years of each election.)

7.7 winvote: Given a seat share, determine the total vote share required
to attain it

The reverse procedure of seats. Example: judgem(routine=‘‘winvote’’,judgem.object=j.ob,winvote=0.7)
outputs the expected vote percentage needed to get 70% of the seats.

7.8 voting.power: Determine the power that distinct groups have in
changing an election result

This option is currently not supported. Stay tuned.

8 Further Judgem output options

8.1 Plotting output to file

Judgem outputs can be printed to a PNG graphics file by giving a file name in the plot command,
like so:
plot(jud.obj,filename=’"drewsfile’’

8.2 System summaries

Using the command summary() on a Judgem object will give one of two results. Without a year
given, the output will be the number of years, as well as the values of model parameters A and o
if a preliminary analysis has been run.

With a year given, a report of the vote outcomes, predictors, seats and populations will be the
output.

9 References
Andrew Gelman, Gary King. ” A Unified Method of Evaluating Electoral Systems and Redistricting
Plans”. American Journal of Political Science, Vol. 38, No. 2, May 1994, Pp. 514-54

Andrew Gelman, Gary King. Judgelt: A Program for Evaluating Electoral Systems and Re-
districting Plans.
A Several demos
After loading the Judgem library, you may run these commands to check that it’s in working order.

data(house6311)
#columns: STATE,DIST,INC,VOTE,TURNOUT,DELSOUTH

#operators:
unc <- function(inp) -1%(inp<0.05)+1*(inp>0.95)

j.ob <- judgem(modelform=VOTE unc(VOTE)+INC,data=house6311,
use.last.votes=T,subset=DELSOUTH==0)

summary (j.ob)
summary (j.ob,which(years==1942))

years <- seq (1896,1992,by=2)

j.ob <- judgem(routine="distreport",judgem.object=j.ob,year=which(years==1962) ,new.predictors=1
j.ob

#seats-votes curve

j.ob <- judgem(routine="seats",jud=j.ob,year=which(years==1986) ,voterange=c(0.2,0.8))
plot(j.ob)

References

	Introduction
	Installation Instructions
	Theory
	Usage Overview
	Formatting Data Sets
	Step 1: Create a Judgem object
	Other Options
	Selecting a data subset
	Automatic Use of Previous Year's Results
	Redistricting
	Uncontested Districts
	Withholding Preliminary Analysis
	Simulation parameters
	Weight

	Examples

	Step 2: Conduct Analyses
	Using new.predictors to recode data
	distreport: Examine the estimation
	seats: Given a vote share, determine the seat share
	Plotting a seats-votes curve

	prob: Given a vote share, determine the probability of an electoral win
	winprob: Given a vote share or deviation, determine the probability that the seat share is within a particular margin
	svsum: Determine partisan bias and responsiveness
	winvote: Given a seat share, determine the total vote share required to attain it
	voting.power: Determine the power that distinct groups have in changing an election result

	Further Judgem output options
	Plotting output to file
	System summaries

	References
	Several demos

