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Chapter 1

Introduction

1.1 What MatchIt Does

MatchIt implements the suggestions of Ho, Imai, King, and Stuart (2005a) for improv-
ing parametric statistical models and reducing model dependence by preprocessing data
with semi-parametric and non-parametric matching methods. After preprocessing with
MatchIt, researchers can use whatever parametric model and software they would have
used without MatchIt, without other modification, and produce inferences that are sub-
stantially more robust and less sensitive to modeling assumptions. (In addition, you may
wish to use Zelig (Imai et al. 2004) for subsequent parametric analyses, as it is designed for
maximum convenience in analyzing MatchIt datasets.) MatchIt reduces the dependence
of causal inferences on commonly made, but hard-to-justify, statistical modeling assumptions
via the largest range of sophisticated matching methods of any software we know of. The
program includes most existing approaches to matching and even enables users to access
methods implemented in other programs through its single, unified, and easy-to-use inter-
face. (In addition, we have written MatchIt so that adding new matching methods to the
software is as easy for anyone with the inclination as it is for us.)

1.2 Software Requirements

MatchIt works in conjunction with the R programming language and statistical software,
and will run on any platform where R is installed (Windows, Unix, or Mac OS X). R is avail-
able free for download at the Comprehensive R Archive Network (CRAN) at http://cran.r-
project.org/. MatchIt has been tested on the most recent version of R. A good way to learn
R, if you don’t know it already, is to learn Zelig (available at http://gking.harvard.edu/zelig)
which includes a self-contained introduction to R and can be used to analyze the matched
data after running MatchIt.
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1.3 Installing MatchIt

To install MatchIt for all platforms, type at the R command prompt,

> install.packages("MatchIt")

and MatchIt will install itself onto your system automatically. (During the installation
process you may either decide to keep or discard the installation files, which will not affect
the way MatchIt runs.)

1.4 Loading MatchIt

You need to install MatchIt only once, but you must load it prior to each use. You can do
this at the R prompt:

> library(MatchIt)

Alternatively, you can specify R to load MatchIt automatically at launch by editing the
Rprofile file located in the R program subdirectory, e.g. C:/R/rw2011/etc/, for Windows
systems or the .Rprofile file located in the home directory for Unix/Linux and Mac OS X
systems, and adding this line:

options(defaultPackages = c(getOption("defaultPackages"), "MatchIt"))

For this change to take effect, you need to restart R.

1.5 Updating MatchIt

We recommend that you periodically update MatchIt at the R prompt by typing:

> update.packages()

> library(MatchIt)

which will update all the libraries including MatchIt and load the new version of MatchIt.
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Chapter 2

Statistical Overview

MatchIt is designed for studies with a dependent variable (or a set of dependent variables)
that is a function of a dichotomous causal (or “treatment”) variable, with values known as
the “treated” and “control” groups, and a set of “pretreatment” covariates, i.e., that are
causally prior to the administration of the treatment. (If you are interested in the causal
effect of more than one variable in your data set, run MatchIt separately for each one; it
is unlikely in any event that any one parametric model will produce valid causal inferences
for more than one treatment variable at a time.) MatchIt can be used for other types of
causal variables by dichotomizing them, perhaps in multiple ways (see also Imai and van
Dyk 2004). MatchIt works for experimental data, but is designed mainly for observational
studies where the treatment variable is simply observed rather than manipulated at will by
the investigator.

We adopt the same notation as in Ho, Imai, King, and Stuart (2005a). Unless otherwise
noted, let i index the n units in the dataset, n1 denote the number of treated units, n0 denote
the number of control units (such that n = n0 +n1), and xi indicate a vector of pretreatment
(or control) variables for unit i. Let ti = 1 when unit i is assigned treatment, and ti = 0 when
unit i is assigned control. (The labels “treatment” and “control” are arbitrary and can be
switched for convenience.) Denote yi(1) as the potential outcome of unit i under treatment
— the value the outcome variable would take if ti were equal to 1, whether or not ti in fact
is 0 or 1 – and yi(0) the potential outcome of unit i under control — the value the outcome
variable would take if ti were equal to 0, regardless of its value in fact. The variables yi(1)
and yi(0) are jointly unobservable, and for each i, we observe one yi = tiyi(1) + (1− ti)yi(0),
and not the other.

2.1 Preprocessing via Matching

If ti and Xi were independent, we would not need to control for Xi, and any parametric
analysis would effectively reduce to a difference in means of Y for the treated and control
groups. The goal of matching is to preprocess the data prior to the parametric analysis so
that the actual relationship between ti and Xi is eliminated or reduced without introducing
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bias and inefficiency. When matching we select, duplicate, or selectively drop observations
from our data, and we do so without inducing bias as long as we use a rule that is a function
only of ti and Xi and does not depend on the outcome variable Yi. MatchIt implements
and evaluates the choice of these rules.

The simplest way to obtain good matches (as defined above) is to use one-to-one exact
matching, which pairs each treated unit with one control unit for which the values of Xi are
identical. However, with many covariates and finite numbers of potential matches, it is often
very difficult to obtain exact matches. Fortunately, good matching only requires that the em-
pirical distribution of X given t = 0 match that of X given t = 1, and so individual (exactly)
matched pairs are not required. Formally the goal of matching is p̃(X | t = 1) ≈ p̃(X | t = 0),
where p̃ refers to the observed empirical density of the data (think histogram), rather than
a population density. Indeed, many of the other methods implemented in MatchIt only
attempt to balance the overall covariate distributions, without necessarily finding one-to-one
exact matches.

A key point in Ho, Imai, King, and Stuart (2005a) is that matching methods by them-
selves are not methods of estimation: Every use of matching in the literature involves an
analysis step following the matching procedure, but almost all analyses use a simple differ-
ence in means. This procedure is appropriate only if exact matching was conducted. In
almost all other cases, some adjustment is required, and there is no reason to degrade your
inferences by using an inferior method of analysis such as a difference in means even when
improving your inferences via preprocessing. Thus, with MatchIt, you can improve your
analyses in two ways. In fact, MatchIt analyses are “doubly robust” in that if either the
matching analysis or the analysis model is correct (but not necessarily both) your inferences
will be statistically consistent.

2.2 Checking Balance

The goal of matching is to create a data set that looks closer to one that would result from
a randomized experiment. When we get close, we break the link between treatment variable
and the pretreatment controls, which makes the parametric form of the analysis model less
relevant or irrelevant entirely. To break this link, we need the distribution of covariates to
be the same within the matched treated and control groups.

A crucial part of any matching procedure is, therefore, to assess how close the (empirical)
covariate distributions are in the two groups, which is known as “balance.” Because the
outcome variable is not used in the matching procedure, a variety of matching methods can
be assessed, and the matching procedure that leads to the best balance is chosen. MatchIt
provides a number of ways to assess the balance of covariates after matching, including
numerical summaries such as the bias (difference in means) or standardized bias (difference
in means divided by the treated group standard deviation), and graphical summaries such
as quantile-quantile plots that compare the empirical distributions of each covariate, and
numerical summaries of this graphical summary. The widely used procedure of doing t-
tests of the difference in means is highly misleading and should never be used to assess

6



balance. These diagnostics can be done on all the covariates that are included in the matching
procedure, as well as on other covariates on which close matches are desired.

2.3 Conducting Analyses after Matching

The most common way that parametric analyses are used to compute quantities of interest
(without matching) is by holding constant some explanatory variables, changing others, and
computing predicted or expected values and taking the difference or ratio, all by using the
parametric functional form. In the case of causal inference, this would mean looking at the
effect on the expected value of the outcome variable when changing T from 0 to 1, while
holding constant the pretreatment control variables X at their means or medians. This, and
indeed any other standard procedure, would be a perfectly reasonable way to proceed with
analysis after matching.

Another increasingly popular way to proceed with analysis after MatchIt is to compute
the average treatment effect on the treated. For example, for the treated group, the potential
outcomes under control, Yi(0), are missing, whereas the outcomes under treatment, Yi(1),
are observed, and the goal of the analysis is to impute the missing outcomes, Yi(0) in ob-
servations where Ti = 1. We do this via simulation using a parametric statistical model (as
described below). Once those potential outcomes are imputed from the model, the estimate

of individual i’s treatment effect is Yi(1)− Ŷi(0) where Ŷi(0) is a Monte Carlo estimate of the
average missing potential outcome for unit i (i.e., the average of simulated values of the de-
pendent variable for unit i under the counterfactual condition where Ti = 0). The in-sample
average treatment effect for the treated individuals can then be obtained by averaging this
difference over all observations i where in fact Ti = 1. (A similar procedure can also be used
to estimate various other quantities of interest such as the average treatment effect for all
observations.) An advantage of this simulation approach is that the uncertainty estimates
such as standard errors and confidence intervals are obtained easily by the usual rules in
fitting the parametric model.

The imputation from the model can be done in at least two ways. Recall that the model
is used to impute the value that the outcome variable would take among the treated units
if those treated units were actually controls. Thus, one reasonable approach would be to
fit a model to the matched data and create simulated predicted values of the dependent
variable for the treated units with Ti switched counterfactually from 1 to 0. An alternative
approach would be to fit a model without T by using only the outcomes of the matched
control units (i.e., using only observations where Ti = 0). Then, given this fitted model,
the missing outcomes Yi(0) are imputed for the matched treated units by using the values
of the explanatory variables for the treated units. The first approach will usually have
lower variance, since all observations are used, and the second may have less bias, since no
assumption of constant parameters is needed. See Ho, Imai, King, and Stuart (2005a) for
more details.
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Chapter 3

User’s Guide to MatchIt

3.1 Preprocessing via Matching

3.1.1 Quick Overview

The main command matchit() implements the matching procedures. A general syntax is:

> m.out <- matchit(treat ~ x1 + x2, data = mydata)

where treat is the dichotomous treatment variable, and x1 and x2 are pre-treatment co-
variates, all of which are contained in the data frame mydata. The dependent variable will
normally be part of mydata but is never used by MatchIt or included the formula. This
command creates the MatchIt object called m.out. Name the output object to see a quick
summary of the results:

> m.out

3.1.2 Examples

To run any of the examples below, you first must load the library and and data:

> library(MatchIt)

> data(lalonde)

Our example data set is from the job training program analyzed in Lalonde (1986) and
Dehejia and Wahba (1999). MatchIt includes a subsample of the original data consisting
of the National Supported Work Demonstration (NSW) treated group and the comparison
sample from the Population Survey of Income Dynamics (PSID).1 The variables in this
data set include participation in the job training program (treat, which is equal to 1 if
participated in the program, and 0 otherwise), age (age), years of education (educ), race

1This data set, lalonde, was created using NSWRE74 TREATED.TXT and CPS3 CONTROLS.TXT
from http://www.columbia.edu/∼rd247/nswdata.
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(black which is equal to 1 if black, and 0 otherwise; hispan which is equal to 1 if hispanic,
and 0 otherwise), marital status (married, which is equal to 1 if married, 0 otherwise), high
school degree (nodegree, which is equal to 1 if no degree, 0 otherwise), 1974 real earnings
(re74), 1975 real earnings (re75), and 1978 real earnings (re78).

Exact Matching

The simplest version of matching is exact. This technique matches each treated unit to all
possible control units with exactly the same value on all the covariates, forming subclasses
such that within each subclass all units (treatment and control) have the same covariate val-
ues. Exact matching is implemented in MatchIt using method = "exact". Exact matching
will be done on all covariates included on the right-hand side of the formula specified in the
MatchIt call. There are no additional options for exact matching. Exact restrictions on a
subset of covariates can also be specified in nearest neighbor matching (see Section 3.1.2).
The following example script can be run by typing demo(exact) at the R prompt,

> m.out <- matchit(treat ~ educ + black + hispan, data = lalonde,

method = "exact")

Subclassification

When there are many covariates on which matches are desired (or some covariates can take
a large number of values), finding sufficient exact matches will often be impossible. The
goal of subclassification is to form subclasses, such that in each the distribution (rather
than the exact values) of covariates for the treated and control groups are are as similar as
possible. Various subclassification schemes exist, including the one based on a scalar distance
measure such as the propensity score estimated using the distance option (see Section 4.1).
Subclassification is implemented in MatchIt using method = "subclass".

The following example script can be run by typing demo(subclass) at the R prompt,

> m.out <- matchit(treat ~ re74 + re75 + educ + black + hispan + age,

data = lalonde, method = "subclass")

The above syntax forms 6 subclasses, which is the default number of subclasses, based on
a distance measure estimated using logistic regression. By default, each subclass will have
approximately the same number of treated units.

Subclassification may also be used in conjunction with nearest neighbor matching de-
scribed below, by leaving the default of method = "nearest" but adding the option subclass.
When you choose this command, MatchIt matches in the same way, but after the nearest
neighbor matches are chosen it places them into subclasses, and adds a variable to the output
object with the subclass numbers.
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Nearest Neighbor Matching

Nearest neighbor matching selects the r best control matches for each individual in the
treatment group (excluding those discarded using the discard) option (by default, r = 1).
The matching is done using a distance measure specified by the distance option. Matches
are chosen for each treated unit one at a time, and at each matching step we choose the
control unit that is not yet matched but is closest to the treated unit on the distance measure.

Nearest neighbor matching is implemented in MatchIt using the method = "nearest"

option. The following example script can be run by typing demo(nearest):

> m.out <- matchit(treat ~ re74 + re75 + educ + black + hispan + age,

data = lalonde, method = "nearest")

Optimal Matching

The default nearest neighbor matching method in MatchIt is “greedy” matching, where
the closest control match for each treated unit is chosen one at a time, without trying to
minimize a global distance measure. In contrast, “optimal” matching, finds the matched
samples with the smallest average absolute distance across all the matched pairs. Gu and
Rosenbaum (1993) find that greedy and optimal matching generally choose the same sets
of controls for the overall matched samples, but that optimal matching does a better job
of minimizing the distance within each pair. In addition, optimal matching can be helpful
when there are not many appropriate control matches for the treated units.

Optimal matching is performed with MatchIt by setting method = "optimal". We
use an add-on package called optmatch (Hansen 2004), which will be automatically installed
when needed. The following example can also be run by typing demo(optimal) at the R
prompt. We conduct optimal ratio matching based on the propensity score from the logistic
regression.

> m.out <- matchit(treat ~ re74 + re75 + age + educ, data = lalonde,

method = "optimal", ratio = 2)

Full Matching

Full matching is a a particular type of subclassification that uses all treated and control
units (Rosenbaum 2002; Hansen 2004). A fully matched sample is composed of matched
sets, where each matched set contains one treated unit and one or more controls (or one
control unit and one or more treated units). The only units not placed into a subclass will
be those discarded (if a discard option was specified) because they are outside the range of
common support. Full matching is optimal in terms of minimizing a weighted average of the
estimated distance measure between each treated subject and each control subject within
each subclass.

Full matching can be performed with MatchIt by setting method = "full". We use
an add-on package called optmatch (Hansen 2004), which will be automatically installed
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when needed. The following example with full matching (using the propensity score based
on logistic regression) can also be run by typing demo(full) at the R prompt:

> m.out <- matchit(treat ~ age + educ + black + hispan + married +

nodegree + re74 + re75, data = lalonde, method = "full")

Genetic Matching

Genetic matching is a method that automates the process of finding an optimal balance
(Diamond and Sekhon 2005). The idea is to use a genetic search algorithm and to find a set
of weights for each covariate such that the optimal balance is achieved after matching. As it
is currently implemented, matching is done with replacement using the matching method of
Abadie and Imbens (2004) and balance is determined by two univariate tests: paired t-tests
for dichotomous variables and a Kolmogorov-Smirnov test for multinomial and continuous
variables.

Genetic matching can be performed with MatchIt by setting method = "genetic".
We use an add-on package called Matching (Sekhon 2004), which will be automatically
installed when needed. The following example of genetic matching (using the estimated
propensity score based on logistic regression as one of the covariates) can also be run by
typing demo(genetic):

> m.out <- matchit(treat ~ age + educ + black + hispan + married + nodegree +

re74 + re75, data = lalonde, method = "genetic")

3.2 Checking Balance

3.2.1 Quick Overview

To check balance, use summary(m.out) for numerical summaries and plot(m.out) for graph-
ical summaries We illustrate here with three examples.

3.2.2 Details

The summary() Command

The summary() command gives measures of the balance between the treated and control
groups in the full (original) data set, and then in the matched data set. If the matching
worked well, the measures of balance should be smaller in the matched data set.

The summary() output for subclassification is the same as that for other types of match-
ing, except that the balance statistics are shown separately for each subclass, and the overall
balance in the matched samples is calculated by aggregating across the subclasses, where
each subclass is weighted by the number of units in the subclass. For exact matching, the
covariate values within each subclass are guaranteed to be the same, and so the measures of
balance are not output for exact matching; only the sample sizes in each subclass are shown.
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• Balance statistics: The statistics the summary() command provides include means,
standardized biases, and Quantile-Quantile (Q-Q) plot summary statistics. In addition,
the summary() command will report (a) the matched call, (b) how many units were
matched, unmatched, or discarded due to the discard option (described below), and
(c) the percent improvement in balance for each of the balance measures, defined as
100((|a| − |b|)/|a|), where a is the balance before and b is the balance after matching.
For each set of units (original and matched data sets), the following statistics are
provided:

1. “Means Treated” and “Means Control” show the weighted means in the treated
and control groups

2. “Treated SD” is the standard deviation of the covariate in the set of treated units

3. “Std. Bias” is the difference in means in the treated and control groups, divided by
the “Treated SD” calculated using all treated units. The same standard deviation
is used for calculating the standardized bias in the original and the matched data
sets so that the success of the matching at reducing bias in the covariate means
can be easily assessed; standardizing by the same quantity puts the two differences
in means on the same scale. Good matches will generally have means less than
a quarter of a standard deviation apart (a standardized biases of less than 0.25),
although smaller is better and only zero is perfect.

4. The final three columns of the summary output give summary statistics of a
Q-Q plot (see below for more information on these plots). Those columns give
the median, mean, and maximum distance between the two empirical quantile
functions (treated and control groups). Values greater than 0 indicate deviations
between the groups in some part of the empirical distributions. The plots of the
two empirical quantile functions themselves, described below, can provide further
insight into which part of the covariate distribution has differences between the
two groups.

• Additional options: Two options to the summary() command can also help with
assessing balance and respecifying the propensity score model, as necessary. First,
the interactions = TRUE option with summary() shows the balance of all squares
and interactions of the covariates used in the matching procedure. Large differences
in higher order interactions usually are a good indication that the assignment model
needs to be respecified. Similarly, the addlvariables option with summary() will
provide balance measures on additional variables not included in the original matching
procedure. If a variable (or interaction of variables) not included in the original distance
measure has large imbalances in the matched groups, including that variable in the next
model specification may improve the resulting balance on that variable. Because the
outcome variable is not used in the matching procedure, a variety of matching methods
can be tried, and the one that leads to the best resulting balance chosen.
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The plot() Command

We can also examine the balance graphically using the plot() command, which provides
two types of plots: jitter plots of the distance measure, and Q-Q plots of each covariate. In
the jitter plot, which can be created by setting type = "jitter", you may identify units
by observation name by clicking the first mouse button near the units. For subclassification,
separate Q-Q plots are printed for each subclass. The jitter plot for subclassification is the
same as that for other types of matching, with the addition of vertical lines indicating the
subclass cut-points.

Two examples of the output from the plot() command are shown below. If the empirical
distributions are the same in the treated and control groups, the points would all lie on
the 45 degree line. Deviations from the 45 degree line indicate differences in the empirical
distribution. The jitter plot shows the overall distribution of propensity scores in the treated
and control groups. In the jitter plot, the size of each diamond is proportional to the weight
given to that unit; matched units are in black while unmatched units are in grey.
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3.3 Conducting Analyses after Matching

Although any program may be used for parametric analysis following MatchIt, this section
shows how to use Zelig with MatchIt. (The resulting matched data sets can also be ex-
ported to other statistical programs using commands such as write.csv() and write.table()

for ASCII files, and write.dta() in foreign package for a STATA binary file.) Zelig (Imai
et al. 2004) is an R package that implements a large variety of statistical models with a single
easy-to-use interface, gives easily interpretable results by simulating quantities of interest,
provides numerical and graphical summaries, and is easily extensible.
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3.3.1 Quick Overview

The general syntax is as follows. First, we use match.data() to create the matched data from
the MatchIt output object (m.out) by excluding unmatched units from the original data,
and including information about the particular matching procedure (i.e., weights, subclasses,
and the distance measure).

> m.data <- match.data(m.out)

where m.data is the resulting matched data. Next, we analyze the matched data set

> z.out <- zelig(Y ~ treat + x1 + x2, model = mymodel, data = m.data)

where Y is the outcome variable, mymodel is the selected model, and z.out is the output
object from zelig.

3.3.2 Examples

We now give four examples using the Lalonde data. They are meant to be read sequentially.
You can run these example commands by typing demo(analysis). Although we use the lin-
ear least squares model in these examples, a wide range of other models are available in Zelig
(for the list of supported models, see http://gking.harvard.edu/zelig/docs/Models Zelig Can.html.

To load the Zelig package after installing it, type

> library(Zelig)

Model-Based Estimates In our first example, we conduct a standard parametric analysis
and compute quantities of interest in the most common way. We begin with nearest
neighbor matching with a logistic regression-based propensity score, discarding with
the convex.hull option:

> m.out0 <- matchit(treat ~ age + educ + black + hispan + nodegree +

married + re74 + re75, method = "nearest", discard

= "convex.hull", data = lalonde)

Then we check balance using the summary and plot procedures (which we don’t show
here). When we get balance as good as possible, we run the parametric analysis:

> z.out0 <- zelig(re78 ~ age + educ + black + hispan + nodegree +

married + re74 + re75, data = match.data(m.out1),

model = "ls")

and then set the explanatory variables at their means (the default) and change the
treatment variable from a 0 to a 1:
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> x.out0 <- setx(z.out0, treat=0)

> x1.out0 <- setx(z.out0, treat=1)

and finally compute the result and examine a summary:

> s.out0 <- sim(z.out1, x = x.out1)

> summary(s.out0)

Average Treatment Effect on the Treated We illustrate now how to estimate the av-
erage treatment effect on the treated in a way that is quite robust. We do this by
estimating the coefficients in the control group alone.

We begin by conducting nearest neighbor matching with a logistic regression-based
propensity score:

> m.out1 <- matchit(treat ~ age + educ + black + hispan + nodegree +

married + re74 + re75, method = "nearest", data = lalonde)

Then we check balance using the summary and plot procedures (which we don’t show
here). We reestimate the matching procedure until we get balance as good as possible.
Then we go to Zelig, and in this case choose to fit a linear least squares model to the
control group only:

> z.out1 <- zelig(re78 ~ age + educ + black + hispan + nodegree +

married + re74 + re75, data = match.data(m.out1, "control"),

model = "ls")

where the "control" option in match.data() extracts only the matched control units
and ls specifies least squares regression. In a smaller data set, this example should
probably be changed to include all the data in this estimation (using data = match.data(m.out1)

for the data) and by including the treatment indicator (which is excluded in the exam-
ple since its a constant in the control group.) Next, we use the coefficients estimated in
this way from the control group, and combine them with the values of the covariates set
to the values of the treated units. We do this by choosing conditional prediction (which
means use the observed values) in setx(). The sim() command does the imputation.

> x.out1 <- setx(z.out1, data = match.data(m.out1, "treat"), cond = TRUE)

> s.out1 <- sim(z.out1, x = x.out1)

Finally, we obtain a summary of the results by

> summary(s.out1)
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Average Treatment Effect (Overall) To estimate the average treatment effect, we con-
tinue with the previous example and fit the linear model to the treatment group:

> z.out2 <- zelig(re78 ~ age + educ + black + hispan + nodegree +

married + re74 + re75, data = match.data(m.out1, "treat"),

model = "ls")

We then conduct the same simulation procedure in order to impute the counterfactual
outcome for the control group,

> x.out2 <- setx(z.out2, data = match.data(m.out1, "control"), cond = TRUE)

> s.out2 <- sim(z.out2, x = x.out2)

In this calculation, Zelig is computing the difference between observed and the expected
values. This means that the treatment effect for the control units is the effect of
control (observed control outcome minus the imputed outcome under treatment from
the model). Hence, to combine treatment effects just reverse the signs of the estimated
treatment effect of controls.

> ate.all <- c(s.out1$qi$ate.ev, -s.out2$qi$ate.ev)

The point estimate, its standard error, and the 95% confidence interval is given by

> mean(ate.all)

> sd(ate.all)

> quantile(ate.all, c(0.025, 0.975))

Subclassification In subclassification, the average treatment effect estimates are obtained
separately for each subclass, and then aggregated for an overall estimate. Estimat-
ing the treatment effects separately for each subclass, and then aggregating across
subclasses, can increase the robustness of the ultimate results since the parametric
analysis within each subclass requires only local rather than global assumptions. How-
ever, fewer observations are obviously available within each subclass, and so this option
is normally chosen for larger data sets.

We begin this example by conducting subclassification with four subclasses,

> m.out2 <- matchit(treat ~ age + educ + black + hispan + nodegree +

married + re74 + re75, data = lalonde,

method = "subclass", subclass = 4)

When balance is as good as we can get it, we then fit a linear regression within each
subclass by controlling for the estimated propensity score (called distance) and other
covariates. In most software, this would involve running four separate regressions and
then combining the results. In Zelig, however, all we need to do is to use the by option:
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> z.out3 <- zelig(re78 ~ re74 + re75 + distance,

data = match.data(m.out2, "control"),

model = "ls", by = "subclass")

The same set of commands as in the first example are used to do the imputation of
the counterfactual outcomes for the treated units:

> x.out3 <- setx(z.out3, data = match.data(m.out2, "treat"), fn = NULL,

cond = TRUE)

> s.out3 <- sim(z.out3, x = x.out3)

> summary(s.out3)

It is also possible to get the summary result for each subclass. For example, the
following command summarizes the result for the second subclass.

> summary(s.out3, subset = 2)
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Chapter 4

Reference Manual

4.1 matchit(): Implementation of Matching Methods

Use matchit() to implement a variety of matching procedures including exact matching,
nearest neighbor matching, subclassification, optimal matching, genetic matching, and full
matching. The output of matchit() can be analyzed via Zelig.

Syntax

> m.out <- matchit(formula, data, method = "nearest", verbose = FALSE, ...)

Arguments

Arguments for All Matching Methods

• formula: formula used to calculate the distance measure for matching. It takes the
usual syntax of R formulas, treat ~ x1 + x2, where treat is a binary treatment
indicator, and x1 and x2 are the pre-treatment covariates. Both the treatment indicator
and pre-treatment covariates must be contained in the same data frame, which is
specified as data (see below). All of the usual R syntax for formulas work here. For
example, x1:x2 represents the first order interaction term between x1 and x2, and
I(x1 ^ 2) represents the square term of x1. See help(formula) for details.

• data: the data frame containing the variables called in formula.

• method: the matching method (default = "nearest", nearest neighbor matching).
Currently, "exact" (exact matching), "full" (full matching), "nearest" (nearest
neighbor matching), "optimal" (optimal matching), "subclass" (subclassification),
and "genetic" (genetic matching) are available. Note that within each of these match-
ing methods, MatchIt offers a variety of options. See below for more details.

• verbose: a logical value indicating whether to print the status of the matching algo-
rithm (default = FALSE).
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Additional Arguments for Specification of Distance Measures The following ar-
guments specify distance measures that are used for matching methods. These arguments
apply to all matching methods except exact matching.

• distance: the method used to estimate the distance measure (default = "logit",
logistic regression) or a numerical vector of user’s own distance measure. Before using
any of these techniques, it is best to understand the theoretical groundings of these
techniques and to evaluate the results. Most of these methods (such as logistic or
probit regression) estimate the propensity score, defined as the probability of receiving
treatment, conditional on the covariates. Available methods include:

– "mahalanobis": the Mahalanobis distance measure.

– binomial generalized linear models with one of the following link functions:

∗ "logit": logistic link

∗ "linear.logit": logistic link with linear propensity score)1

∗ "probit": probit link

∗ "linear.probit": probit link with linear propensity score

∗ "cloglog": complementary log-log link

∗ "linear.cloglog": complementary log-log link with linear propensity score

∗ "log": log link

∗ "linear.log": log link with linear propensity score

∗ "cauchit" Cauchy CDF link

∗ "linear.cauchit" Cauchy CDF link with linear propensity score

– Choose one of the following generalized additive models (see help(gam) for more
options).

∗ "GAMlogit": logistic link

∗ "GAMlinear.logit": logistic link with linear propensity score

∗ "GAMprobit": probit link

∗ "GAMlinear.probit": probit link with linear propensity score

∗ "GAMcloglog": complementary log-log link

∗ "GAMlinear.cloglog": complementary log-log link with linear propensity
score

∗ "GAMlog": log link

∗ "GAMlinear.log": log link with linear propensity score,

∗ "GAMcauchit": Cauchy CDF link

∗ "GAMlinear.cauchit": Cauchy CDF link with linear propensity score

– "nnet": neural network model. See help(nnet) for more options.

1The linear propensity scores are obtained by transforming back onto a linear scale.
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– "rpart": classification trees. See help(rpart) for more options.

• distance.options: optional arguments for estimating the distance measure. The
input to this argument should be a list. For example, if the distance measure is es-
timated with a logistic regression, users can increase the maximum IWLS iterations
by distance.options = list(maxit = 5000). Find additional options for general
linear models using help(glm) or help(family), for general additive models us-
ing help(gam), for neutral network models help(nnet), and for classification trees
help(rpart).

• discard: specifies whether to discard units that fall outside some measure of support
of the distance measure (default = "none", discard no units). Discarding units may
change the quantity of interest being estimated. Enter a logical vector indicating which
unit should be discarded or choose from the following options:

– "none": no units will be discarded before matching. Use this option when the
units to be matched are substantially similar, such as in the case of matching
treatment and control units from a field experiment that was close to (but not
fully) randomized (e.g., Imai 2005), when caliper matching will restrict the donor
pool, or when you do not wish to change the quantity of interest and the para-
metric methods to be used post-matching can be trusted to extrapolate.

– "hull.both": all units that are not within the convex hull will be discarded. We
recommend that this option be used with observational data sets.

– "both": all units (treated and control) that are outside the support of the distance
measure will be discarded.

– "hull.control": only control units that are not within the convex hull of the
treated units will be discarded.

– "control": only control units outside the support of the distance measure of
the treated units will be discarded. Use this option when the average treatment
effect on the treated is of most interest and when you are unwilling to discard
non-overlapping treatment units (which would change the quantity of interest).

– "hull.treat": only treated units that are not within the convex hull of the
control units will be discarded.

– "treat": only treated units outside the support of the distance measure of the
control units will be discarded. Use this option when the average treatment effect
on the control units is of most interest and when unwilling to discard control
units.

• reestimate: If FALSE (default), the model for the distance measure will not be re-
estimated after units are discarded. The input must be a logical value. Re-estimation
may be desirable for efficiency reasons, especially if many units were discarded and so
the post-discard samples are quite different from the original samples.
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Additional Arguments for Subclassification

• sub.by: criteria for subclassification. Choose from: "treat" (default), the number of
treatment units; "control", the number of control units; or "all", the total number
of units.

• subclass: either a scalar specifying the number of subclasses, or a vector of probabil-
ities bounded between 0 and 1, which create quantiles of the distance measure using
the units in the group specified by sub.by (default = subclass = 6).

Additional Arguments for Nearest Neighbor Matching

• m.order: the order in which to match treatment units with control units.

– "largest" (default): matches from the largest value of the distance measure to
the smallest.

– "smallest": matches from the smallest value of the distance measure to the
largest.

– "random": matches in random order.

• replace: logical value indicating whether each control unit can be matched to more
than one treated unit (default = replace = FALSE, each control unit is used at most
once – i.e., sampling without replacement). For matching with replacement, use
replace = TRUE.

• ratio: the number of control units to match to each treated unit (default = 1). If
matching is done without replacement and there are fewer control units than ratio

times the number of eligible treated units (i.e., there are not enough control units for
the specified method), then the higher ratios will have NA in place of the matching unit
number in match.matrix.

• exact: variables on which to perform exact matching within the nearest neighbor
matching (default = NULL, no exact matching). If exact is specified, only matches
that exactly match on the covariates in exact will be allowed. Within the matches
that match on the variables in exact, the match with the closest distance measure
will be chosen. exact should be entered as a vector of variable names (e.g., exact =

c("X1", "X2")).

• caliper: the number of standard deviations of the distance measure within which to
draw control units (default = 0, no caliper matching). If a caliper is specified, a control
unit within the caliper for a treated unit is randomly selected as the match for that
treated unit. If caliper != 0, there are two additional options:

– calclosest: whether to take the nearest available match if no matches are avail-
able within the caliper (default = FALSE).
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– mahvars: variables on which to perform Mahalanobis-metric matching within each
caliper (default = NULL). Variables should be entered as a vector of variable names
(e.g., mahvars = c("X1", "X2")). If mahvars is specified without caliper, the
caliper is set to 0.25.

• subclass and sub.by: See the options for subclassification for more details on these
options. If a subclass is specified within method = "nearest", the matched units
will be placed into subclasses after the nearest neighbor matching is completed.

Additional Arguments for Optimal Matching

• ratio: the number of control units to be matched to each treatment unit (default =
1).

• ...: additional inputs that can be passed to the fullmatch() function in the optmatch
package. See help(fullmatch) or http://www.stat.lsa.umich.edu/˜bbh/optmatch.html
for details.

Additional Arguments for Full Matching

• ...: additional inputs that can be passed to the fullmatch() function in the optmatch
package. See help(fullmatch) or http://www.stat.lsa.umich.edu/˜bbh/optmatch.html
for details.

Additional Arguments for Genetic Matching The available options are listed below.

• ratio: the number of control units to be matched to each treatment unit (default =
1).

• ...: additional minor inputs that can be passed to the GenMatch() function in the
Matching package. See help(GenMatch) or http://sekhon.polisci.berkeley.edu/library/Matching/html/GenMatch.html
for details.

Output Values

Regardless of the type of matching performed, the matchit output object contains the
following elements:2

• call: the original matchit() call.

• formula: the formula used to specify the model for estimating the distance measure.

• model: the output of the model used to estimate the distance measure. summary(m.out$model)
will give the summary of the model where m.out is the output object from matchit().

2When inapplicable or unnecessary, these elements may equal NULL. For example, when exact matching,
match.matrix = NULL.

22

http://www.stat.lsa.umich.edu/~bbh/optmatch.html
http://www.stat.lsa.umich.edu/~bbh/optmatch.html
http://sekhon.polisci.berkeley.edu/library/Matching/html/GenMatch.html


• match.matrix: an n1× ratio matrix where:

– the row names represent the names of the treatment units (which match the row
names of the data frame specified in data).

– each column stores the name(s) of the control unit(s) matched to the treatment
unit of that row. For example, when the ratio input for nearest neighbor or
optimal matching is specified as 3, the three columns of match.matrix represent
the three control units matched to one treatment unit).

– NA indicates that the treatment unit was not matched.

• discarded: a vector of length n that displays whether the units were ineligible for
matching due to common support restrictions. It equals TRUE if unit i was discarded,
and it is set to FALSE otherwise.

• distance: a vector of length n with the estimated distance measure for each unit.

• weights: a vector of length n with the weights assigned to each unit in the matching
process. Unmatched units have weights equal to 0. Matched treated units have weight
1. Each matched control unit has weight proportional to the number of treatment units
to which it was matched, and the sum of the control weights is equal to the number of
uniquely matched control units.

• subclass: the subclass index in an ordinal scale from 1 to the total number of sub-
classes as specified in subclass (or the total number of subclasses from full or exact
matching). Unmatched units have NA.

• q.cut: the subclass cut-points that classify the distance measure.

• treat: the treatment indicator from data (the left-hand side of formula).

• X: the covariates used for estimating the distance measure (the right-hand side of
formula). When applicable, X is augmented by covariates contained in mahvars and
exact.

Contributors

If you use MatchIt, please cite

Ho, D., Imai, K., King, G., and Stuart, E. (2005a), “Matching as Nonparametric
Preprocessing for Parametric Causal Inference,” Http://gking.harvard.edu/files/matchp.pdf
and — (2005b), “Matching as Nonparametric Preprocessing for Parametric
Causal Inference,” Http://gking.harvard.edu/matchit/

The convex.hull discard option is implemented via the WhatIf package. If you use this
option, please cite
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Stoll, H., King, G., and Zeng, L. (2005), “WhatIf: Software for Evaluating Coun-
terfactuals,” Http://gking.harvard.edu/whatif/ and either — (2006b), “When
Can History Be Our Guide? The Pitfalls of Counterfactual Inference,” Inter-
national Studies Quarterly, forthcoming, copy at http://gking.harvard.edu/files/counterf.pdf
or King, G. and Zeng, L. (2006a), “The Dangers of Extreme Counterfactuals,”
Political Analysis, forthcoming, copy at http://gking.harvard.edu/files/abs/counterft-
abs.shtml

Generalized linear distance measures are implemented via the stats package. If you use
this distance measure, please cite

Venables, W. N. and Ripley, B. D. (2002), Modern Applied Statistics with S,
Springer-Verlag, 4th ed

Generalized additive distance measures are implemented via the mcgv package. If you
use this distance measure, please cite

Hastie, T. J. and Tibshirani, R. (1990), Generalized Additive Models, London:
Chapman Hall

The neural network distance measure is implemented via the nnet package. If you use
this distance measure, please cite

Ripley, B. (1996), Pattern Recognition and Neural Networks, Cambridge Uni-
veristy Press

The classification trees distance measure is implemented via the rpart package. If you
use this distance measure, please cite

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984), Classifica-
tion and Regression Trees, New York, New York: Chapman & Hall

Full and optimal matching are implemented via the optmatch package by Ben Hansen.
If you use either of these methods, please cite

Hansen, B. B. (2004), “Full Matching in an Observational Study of Coaching for
the SAT,” Journal of the American Statistical Association, 99, 609–618

Genetic matching is implemented via the Matching package by Jasjeet Sekhon. If you
use this method, please cite

Diamond, A. and Sekhon, J. (2005), “Genetic Matching for Estimating Causal
Effects: A New Method of Achieving Balance in Observational Studies,”
http://jsekhon.fas.harvard.edu/

4.2 summary(): Numerical Summaries of Balance

The summary() command returns numerical summaries of balance diagnostics.
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Syntax

summary(object, interactions = FALSE, addlvariables = NULL, standardize = FALSE, ...)

Arguments

• object: the output from matchit().

• interactions: an option to calculate summary statistics in sum.all and sum.matched

for all covariates, their squares, and two-way interactions when interactions = TRUE

and only the covariates themselves when interactions = FALSE, (DEFAULT = FALSE).

• addlvariables: additional variables on which to calculate the diagnostic statistics (in
addition to the variables included in the matching procedure) (DEFAULT = NULL).
addlvariables: a data frame containing additional variables whose balance is exam-
ined. The data should come with the same number of units and units in the same
order as in the data set used for matchit().

• standardize: a logical variable indicating whether to standardize balance measures.
(DEFAULT = FALSE)

Output Values

The output from the summary() command includes the following elements, when applicable:

• The original assignment model call.

• sum.all: a data frame that contains variable names and interactions down the row
names, and summary statistics on all observations in each of the columns. The columns
in sum.all contain 3:

– means of all covariates X for treated and control units, where Means Treated=
µX|T=1 = 1

n1

∑
T=1 Xi and Means Control= µX|T=0 = 1

n0

∑
T=0 Xi,

– balance statistics of the original data (before matching), which compare treated
and control covariate distributions. If standardize = FALSE, balance measures
will be presented on the original scale. Specifically, mean differences (Mean Diff.)
as well as the median, mean, and maximum value of differences in empirical quan-
tile functions for each covariate will be given (eQQ Med, eQQ Mean, and eQQ Max,
respectively). If standardize = TRUE, the balance measures will be standardized.

Standardized mean differences (Std. Mean Diff.), defined as
µX|T=1−µX|T=0

sx|T=1
, as

well as the median, mean, and maximum value of differences in empirical cumula-
tive distribution functions for each covariate will be given (eCDF Med, eCDF Mean,
and eCDF Max, respectively).

3The output for full matching is slightly different from that described here; see Section 3.1.2 for details.
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• sum.matched: a data frame which contains variable names down the row names, and
summary statistics on only the matched observations in each of the columns. Specifi-
cally, the columns in sum.matched contain the following elements4:

– weighted means for matched treatment units of all covariates X and their inter-
actions, where Means Treated= µwX|T=1 = 1

n1

∑
T=1 wiXi and Means Control=

µwX|T=0 = 1
n0

∑
T=0 wiXi,

– balance statistics of the matched data (after matching), which compare treated
and control covariate distributions. If standardize = FALSE, balance measures
will be presented on the original scale. Specifically, mean differences (Mean Diff.)
as well as the median, mean, and maximum value of differences in empirical quan-
tile functions for each covariate will be given (eQQ Med, eQQ Mean, and eQQ Max,
respectively). If standardize = TRUE, the balance measures will be standardized.

Standardized mean differences (Std. Mean Diff.), defined as
µX|T=1−µX|T=0

sx|T=1
, as

well as the median, mean, and maximum value of differences in empirical cumula-
tive distribution functions for each covariate will be given (eCDF Med, eCDF Mean,
and eCDF Max, respectively).

where w represents the vector of weights.

• reduction: the percent bias reduction achieved in each of the balance measures in
sum.all and sum.matched, defined as 100(|a| − |b|)/|a|, where a was the value of
the balance measure before matching and b is the value of the balance measure after
matching. Because the difference in means and the standardized bias differ only by a
constant (the standard deviation in the full treated group), the percent reduction in
bias is the same for these two measures, and thus is only printed out once.

• nn: the sample sizes in the full and matched samples and the number of discarded
units, by treatment and control.

• q.table: an array that contains the same information as sum.matched by subclass.

• qn: the sample sizes in the full and matched samples and the number of discarded
units, by subclass and by treatment and control.

• match.matrix: the same object is contained in the output of matchit().

4.3 plot(): Graphical Summaries of Balance

The plot() command allows you to check the distributions of covariates in the assignment
model, squares, and interactions, and within each subclasses if specified.

4The values output for full matching are slightly different from that described here; see Section 3.1.2 for
details
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Syntax

> plot(m.out, discrete.cutoff = 5, type = "QQ",

numdraws = 5000, interactive = TRUE, which.xs = NULL, ...)

Arguments

• type: type of output graph. type = "QQ" (default) outputs empirical quantile-quantile
plots of each covariate to check balance of marginal distributions. Alternatively, type
= "jitter" outputs jitter plots of the propensity score for treated and control units.

• discrete.cutoff: For quantile-quantile plots, discrete covariates that take 5 or fewer
values are jittered for visibility. This may be changed by setting this argument to any
other positive integer.

• interactive: If TRUE (default), users can identify individual units by clicking on the
graph with the left mouse button, and (when applicable) choose subclasses to plot.

• which.xs: Specifies particular covariate names in a character vector to plot only a
subset of the covariates.

• subclass: If interactive = FALSE, users can specify which subclass to plot.

Output Values

• Empirical quantile-quantile plot: This graph plots covariate values that fall in (approx-
imately) the same quantile of treated and control distributions. Control unit quantile
values are plotted on the x-axis, and treated unit quantile values are plotted on the
y-axis. If values fall below the 45 degree line, control units generally take lower values
of the covariate. Data points that fall exactly on the 45 degree line indicate that the
marginal distributions are identical.

• Jitter plots: This graph plots jittered estimated propensity scores of treated and control
units. Dark diamonds indicate matched units and grey diamonds indicate unmatched
or discarded units. The area of the diamond is proportional to the weights. Vertical
lines are plotted if subclassification is used.

4.4 match.data(): Extracting the Matched Data Set

4.4.1 Usage

To extract the matched data set for subsequent analyses from the output object (see Sec-
tion 3.3), we provide the function match.data(). This is used as follows:

> m.data <- match.data(object, group = "all", distance = "distance", weights = "weights",

subclass = "subclass")
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The output of the function match.data() is the original data frame where additional in-
formation about matching (i.e., distance measure as well as resulting weights and subclasses)
is added, restricted to units that were matched.

4.4.2 Arguments

match.data() takes the following inputs:

1. object is the output object from matchit(). This is a required input.

2. group specifies for which matched group the user wants to extract the data. Available
options are "all" (all matched units), "treat" (matched units in the treatment group),
and "control" (matched units in the control group). The default is "all".

3. distance specifies the variable name used to store the distance measure. The default
is "distance".

4. weights specifies the variable name used to store the resulting weights from matching.
The default is "weights". See Section 5.2.1 for more details on the weights.

5. subclass specifies the variable name used to store the subclass indicator. The default
is "subclass".

4.4.3 Examples

Here, we present examples for using match.data(). Users can run these commands by
typing demo(match.data) at the R prompt. First, we load the Lalonde data,

> data(lalonde)

The next line performs nearest neighbor matching based on the estimated propensity
score from the logistic regression,

> m.out1 <- matchit(treat ~ re74 + re75 + age + educ, data = lalonde,

+ method = "nearest", distance = "logit")

To obtain matched data, type the following command,

> m.data1 <- match.data(m.out1)

It is easy to summarize the resulting matched data,

> summary(m.data1)

To obtain matched data for the treatment or control group, specify the option group as
follows,
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> m.data2 <- match.data(m.out1, group = "treat")

> summary(m.data2)

> m.data3 <- match.data(m.out1, group = "control")

> summary(m.data3)

We can also specify different names for the subclass indicator, the weight variable, and
the estimated distance measure. The following example first does a subclassification method,
obtains the matched data with specified names for those three variables, and then print out
the names of all variables in the resulting matched data.

> m.out2 <- matchit(treat ~ re74 + re75 + age + educ, data = lalonde,

+ method = "subclass")

> m.data4 <- match.data(m.out2, subclass = "block", weights = "w",

+ distance = "pscore")

> names(m.data4)
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Chapter 5

Appendices

5.1 What’s New?

• 2.2-5 (December 7, 2005): Stable release for R 2.2. Changed URL of WhatIf to CRAN.

• 2.2-4 (December 3, 2005): Stable release for R 2.2. User’s own distance measure can
be used with MatchIt (thanks to Nelson Lim).

• 2.2-3 (November 18, 2005): Stable release for R 2.2. standardize option added to full
matching and subclass (thanks to Jeronimo Cortina).

• 2.2-2 (November 9, 2005): Stable release for R 2.2. optmatch package now on CRAN.
Changed URL for that package.

• 2.2-1 (November 1, 2005): Stable release for R 2.2. balance measures based on empir-
ical CDF are added as a new option standardize in summary().

• 2.1-4 (October 14, 2005): Stable release for R 2.2. strictly empirical (no interpolation)
quantile-quantile functions and plots are used.

• 2.1-3 (September 27, 2005): Stable release for R 2.1. automated the installation of
optional packages. fixed a coding error in summary(), the documentation edited.

• 2.1-2 (September 27, 2005): Stable release for R 2.1. minor changes to file names, the
option "whichxs" added to the plot(), major editing of the documentation.

• 2.1-1 (September 16, 2005): Stable release for R 2.1. Genetic matching added.

• 2.0-1 (August 29, 2005): Stable release for R 2.1. Major revisions including some
syntax changes. Statistical tests are no longer used for balance checking, which are
now based on the empirical covariate distributions (e.g., quantile-quantile plot).

• 1.0-2 (August 10, 2005): Stable release for R 2.1. Minor bug fixes (Thanks to Bart
Bonikowski).

30



• 1.0-1 (January 3, 2005): Stable release for R 2.0. The first official version of MatchIt

5.2 Frequently Asked Questions

5.2.1 How Exactly are the Weights Created?

Each type of matching method can be thought of as creating groups of units with at least one
treated unit and at least one control unit in each. In exact matching, subclassification, or full
matching, these groups are the subclasses formed, and the number of treated and control
units will vary quite a bit across subclasses. In nearest neighbor or optimal matching,
the groups are the pairs (or sets) of treated and control units matched. In 1:1 nearest
neighbor matching there will be one treated unit and one control unit in each group. In
2:1 nearest neighbor matching there will be one treated unit and two control units in each
group. Unmatched units receive a weight of 0. All matched treated units receive a weight
of 1.

The weights for matched control units are formed as follows:

1. Within each group, each control unit is given a preliminary weight of nti/nci, where
nti and nci are the number of treated and control units in group i, respectively.

2. If matching is done with replacement, each control unit’s weight is added up across
the groups in which it was matched.

3. The control group weights are scaled to sum to the number of uniquely matched control
units.

With subclassification, when the analysis is done separately within each subclass and
then aggregated up across the subclasses, these weights will generally not be used, but they
may be used for full matching or nearest neighbor matching if the number of control units
matched to each treated unit varies.

5.2.2 How Do I Create Observation Names?

Since the diagnostics often make use of the observation names of the data frame, you may
find it helpful to specify observation names for the data input. Use the row.names command
to achieve this. For example, to assign the names “Dan”, “Kosuke”, “Liz” and “Gary” to a
data frame with the first four observations in the Lalonde data, type:

> test <- lalonde[1:4, ]

> row.names(test) <- c("Dan", "Kosuke", "Liz", "Gary")

> print(test)

age educ black hisp married nodegr re74 re75 re78 u74 u75 treat

Dan 37 11 1 0 1 1 0 0 9930 1 1 1

Kosuke 22 9 0 1 0 1 0 0 3596 1 1 1
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Liz 30 12 1 0 0 0 0 0 24910 1 1 1

Gary 27 11 1 0 0 1 0 0 7506 1 1 1

5.2.3 How Do I Ensure Replicability As MatchIt Versions De-
velop?

As the literature on matching techniques is rapidly evolving, MatchIt will strive to incorpo-
rate new developments. MatchIt is thereby an evolving program. Users may be concerned
that analysis written in a particular version may not be compatible with newer versions of
the program. The primary way to ensure that replication archives remain valid is to record
the version of MatchIt that was used in the analysis. Our website maintains binaries of all
public release versions, so that researchers can replicate results exactly with the appropriate
version (for Unix-based platforms, see http://gking.harvard.edu/src/contrib/; for windows,
see http://gking.harvard.edu/bin/windows/contrib/).

In addition, users may find it helpful to install packages with version control, using
the installWithVers command with install.packages. So for example, in the windows
R console, users may download the appropriate version from our website and install the
package with version control by:

install.packages(choose.files(’’,filters=Filters[c(’zip’,’All’),]),

.libPaths()[1],installWithVers=T,CRAN=NULL)

R CMD INSTALL similarly permits users to specify this version using the --with-package-versions
option. After having specified version control, different versions of the program may be called
as necessary. Similar advice may also be appropriate for version control for R more generally.

5.2.4 How Do I Use My Own Distance Measure with MatchIt ?

A vector of your own distance measure can be used by specifying it as the input for distance
option in matchit().

5.2.5 What Do I Do about Missing Data?

MatchIt requires complete data sets, with no missing values (other than potential out-
comes of course). If there are missing values in the data set, imputation techniques should
be used first to fill in (“impute”) the missing values (both covariates and outcomes), or the
analysis should be done using only complete cases (which we do not in general recommend).
For imputation software, see Amelia at (http://gking.harvard.edu/stats.shtml) or other pro-
grams at http://www.multiple-imputation.com. For more information on missing data and
imputation methods, see King et al. (2001).
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5.2.6 Why Preprocessing?

The purpose of matching is to approximate an experimental template, where the match-
ing procedure approximates random assignment of treatment in order to balance covariates
between treatment and control groups. Separation of the estimation procedure into two
steps simulates the research design of an experiment, where no information on outcomes is
known at the point of experimental design and randomization. Much like an experimenter
cannot easily rerun an experiment if the outcome was not satisfactory, the separation of
the balancing process in MatchIt from the analysis process afterward helps keep clear the
goal of balancing control and treatment groups and makes it less likely that the user will
inadvertently cook the books in his or her favor.
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