An Introduction to RSNL

Tony Fader, Gary King, Daniel Pemstein, and Kevin Quinn

December 16, 2008

1 Introduction

RSNL (R Statistics with Natural Language) provides R programmers with access to an arsenal of
natural language processing (NLP) tools that they can use without leaving the R environment.
RSNL builds upon the text-processing middle-ware layer provided by the tm package, and provides
a uniform interface to a multitude of text processing and modeling tools. RSNL relies on S4 classes
and generic functions to present programmers with a simple, uniform, and extensible interface
and provides tools that allow the user to keep track of relationships between chunks of text—and
decompositions and summaries of those bits of text—throughout the analysis process. While most
publicly available NLP toolkits are designed to meet the needs of natural language research, RSNL
is intended to faciliate NLP-based analyses by applied researchers, particularly those in the social
and behavioral sciences.

This document provides a short, example-based, introduction to RSNL that demonstrates how
to prepare a tm-managed text collection to interact with RSNL’s toolset, how to pre-process the
text using a combination of tm-based and RSNL-provided tools, how to extend and adapt these
tools, and how to apply NLP tools to the text collection to produce multiple “views” of a text
collection, or corpus. As development on RSNL progresses, this document will also demonstrate
how to use RSNL to better keep track of corpus structure and meta-data, and explain the range of
clustering and classification methods, visualization tools, discourse modeling and testing techniques,
and topic modeling methods included in the RSNL toolkit.

2 Working with Corpus Objects

RSNL relies on tm to handle text input-output, data management and storage. tm represents
collections of documents using the Corpus data structure which can read text from a disk or other
Source using either a pre-defined or custom reader function.! For this example, we will construct a
Corpus from a selection of 475 short speeches given by legislators and bureaucrats during debates on
legislation in the European Parliament. These data ship with RSNL as a series of XML documents.
The following code reads the collection from disk:

> library(RSNL)
> readSpeeches <- FunctionGenerator (function(...) {

+ function(elem, load, language, id) {
+ tree <- xmlTreeParse(elem$content,
+ asText = TRUE)

!Please see http://cran.r-project.org/web/packages/tm/index.html or http://www. jstatsoft.org/v25/i05
for detailed tm documentation and examples.

+ + V +V + A+ A+ A+ F A+t FFFFFEFFEFFFEEFFEFEFE AR E R+

y9)

}

root <- xmlRoot (tree)

bill <- root[["BILL"]]

speaker <- root[["SPEAKER"]]

status <- speaker[["STATUS"]]

title <- paste(xmlValue(bill[["TITLE"]]),
"-" xmlValue (speaker[["NAME"]]),

Sep = n ”)
dateTimeStamp <- as.P0SIXct(xmlValue(bill[["DATE"]]),
tz = "CET")

content <- xmlValue(root[["TEXT"]])

id <- paste(xmlValue(bill[["CODE"]1]),
xmlValue (root [["SPEAKER-NUMBER"]]),
sep = ".")

doc <- new("PlainTextDocument", .Data = content,
Cached = TRUE, URI = elem$uri,

Author = "European Parliament",
DateTimeStamp = dateTimeStamp,

Origin = "http://www.europarl.europa.eu”,
Heading = title, Language = language,

ID = id)

meta(doc, "SPEAKER-NUMBER") <- xmlValue(root[["SPEAKER-NUMBER"]])

for (name in c("CODE", "ISSUEAREA",

"PASSED", "RCV")) meta(doc, name) <- xmlValue(bill[[name]])

for (name in c("COUNTRY", "GROUP")) meta(doc,
name) <- xmlValue(speaker[[name]])

for (name in c("ISPRESIDENT", "ISCOUNCIL",
"ISCOMMISSION", "ISOTHERBUREAUCRAT",
"ISRAPPORTEUR", "ISCOMMITTEEREP",
"ISAUTHOR", "ISONBEHALFOFGROUP")) meta(doc,
name) <- xmlValue(status[[name]])

doc

debates.source <- system.file("samples/en/ep-debates",

package = "RSNL")

tm.debates <- Corpus(DirSource(debates.source),
readerControl = list(reader = readSpeeches,

language = "EN"))

2.1 Corpora and Passing Semantics

Currently, Corpus objects may store their internal data either directly in memory, or in a simple
database format. When using in-memory storage, Corpus objects use R’s standard pass-by-value
semantics. This means that whenever a Corpus is passed to a function or method the interpreter
makes a copy of the object and any changes to the object made within the function are not reflected

in the original object. Furthermore, if we were to make a simple copy of tm.debates

> tm.debates.copy <- tm.debates

tm.debates.copy and tm.debates would represent distinct collections of text and changes to one
object would have no effect on the other. On the other hand, when a Corpus stores its data on
disk, it uses pass-by-reference semantics; in this case Corpus objects are essentially handles to an
underlying data store and multiple copies of the handle all refer to the same set of data. Under
these circumstances modifications to tm.debates.copy would be reflected in subsequent calls to
tm.debates.

2.2 PCorpus and Reference Objects

RSNL provides a wrapper class for Corpus objects, PCorpus, that unifies corpus semantics. PCor—
pus objects behave exactly like Corpus objects? except that they use pass-by-reference semantics
regardless of their underlying storage model. Furthermore, they provide under-the-hood tools that
facilitate the data-view model employed by RSNL which we describe in more detail below. Thus,
the first step in any RSNL analysis is to wrap an existing Corpus:

> debates <- PCorpus(tm.debates)

PCorpus objects are an example of a non-standard type of S4 object used throughout RSNL:
RObject or reference objects. These objects pass one or more of their internal slots by reference
when one makes a copy or passes the object to a function. It is possible to force the interpreter to
make a pure copy of a RObject using the clone() method:

> debates.copy <- clone(debates)

> debates.copy.ref <- debates.copy

> debates.copy[[1]] <- debates.copy[[2]]
> debates[[1]] == debates.copy[[1]]

[1] FALSE
> debates.copy.ref[[1]] == debates.copy[[1]]

[1] TRUE

3 Tokenization and View Construction

Natural language models typically rely on patterns of tokens within the data. Tokens are often
individual words, but can, in principle, represent the output of any procedure that splits a single
piece of text into individual chunks. In this example, we’ll take the traditional approach to tok-
enization and attempt to represent, or view, each document in the corpus as a series of individual
words. To do so, we need to clean up the text a bit—transform the text to all lowercase, remove
punctuation, numbers (which we’ll represent using a single token), and common words—and do the
actual tokenization. In this example, we’ll also employ a common technique known as stemming,
which reduces similar words with different suffixes (e.g. run, runner, running) to common roots.
Finally, we’ll ignore especially short words when modeling the text.

The above-mentioned procedures all do varying degrees of violence to the original text. In
English, converting the documents to lowercase will have little impact on our ability to refer back
to and understand the content of the original documents while performing an exploratory analysis,

2 At the current stage of development this not quite true: we have not implemented the ¢() method for PCorpus
objects, nor have we tested their compatibility with tm’s lazy mapping facilities.

but other operations, such as transforming or eliminating certain symbols or strings, tokenizing,
and stemming, can render the original text unreadable. RSNL takes advantage of an “object-
view” model to help overcome this issue. When performing basic text-cleaning operations, such as
converting the text to lower case, the analyst will often wish to employ tm’s various filtering and
mapping to tools to modify the Corpus itself. But when performing more destructive operations
the analyst can benefit by creating “views” of the underlying Corpus, or its constituent documents,
that encapsulate both a reference to the original text and a policy for transforming the text in
some way. Of course, there is a trade-off here: iteratively modifying the text in place requires less
storage space than the object-view approach and may be necessary with large datasets; on the other
hand, the object-view model makes it far easier for the analyst to refer back to the underlying data
and work with multiple representations (views) of the data at once, and will generally use fewer
resources than maintaining a copy of the corpus for each desired representation of the data.

3.1 Working with Tokenized Views

We'll start by constructing a simple tokenized view of the corpus. RSNL provides a method,
tokenize() that can generate tokens from a variety of data types. At the most basic level, given
a character object (or child type such as tm’s PlainTextDocument), tokenize() will return a
vector of tokens:

> tokenize(debates[[1]])

[1] "ACAaACAz" "The" "next"
[4] "item" "ig" "the"

[7] "report" e "AB"

[10] "- "0027" "

[13] "2004" " "by"

[16] "Mrs" "Corbey" "on"

[19] "the" "draft" "European"
[22] "Parliament" "and" "Council"
[25] "Directive" "amending" "Directive"
[28] "94" " "2

[31] "/ "EC" "on"

[34] "packaging" "and" "packaging"
[37] "waste" "KCAa"

On the other hand, given a PCorpus, tokenize() will generate a view of that corpus or of one of
its documents:

> (debates.tok <- tokenize(debates))

A tokenized corpus view with 183842 total tokens and 9035 unique tokens

> (debates.tok.1l <- tokenize(debates, index = 1))

A tokenized document view of A6-0027/2004.1 with 39 total tokens and 32 unique tokens

debates.tok and debates.tok.1 are examples of View objects; specifically, debates.tok is a
TokenizedCorpusView and debates.tok.1l is a TokenizedDocumentView.®> We can examine these

3Note that views are only defined in reference to PCorpus objects. Therefore, you can not create a view to a
document not contained in a corpus.

objects with a variety of methods. For example, given these two views, we can look at the tokens

within the first document in the corpus in one of two ways:

> tokens(debates.tok[[1]])

[1]

(4]

(7]
[10]
[13]
[16]
[19]
[22]
[25]
[28]
[31]
[34]
[37]

~ozA a2

"ACASACAE"
n itemll
"report"
n_n

ll2004||
lersll
llthell

"Parliament"

"Directive"
ll94|l

ll/ll
"packaging"
"waste"

> tokens (debates

[1]

(4]

(7]
[10]
[13]
[16]
[19]
[22]
[25]
[28]
[31]
[34]
[37]

~ozA a2

"ACA3ACAE"
n itemll
"report"
n_n

ll2004||
lersll
llthell

"Parliament"

"Directive"
ll94|l

ll/ll
"packaging"
"waste"

llThell
n is n
n (II
"oo27"
Il) n
"Corbey"
"draft"
llandll
"amending"
II/II
IIECH

llandll
n . n

.tok.1)

llThell
n is n
n (II
"oo27"
Il) n
"Corbey"
"draft"
llandll
"amending"
II/II
IIECH

llandll
n . n

"next"
|Ithell
IIA6 n
n / n
IIbyll
n On"
"European"
"Council"
"Directive"
n 62"
n onll
"packaging"
"ECRa"

"next"
||thell
IIA6 n
n / n
IIbyll
n On"
"European"
"Council"
"Directive"
n 62"
n onll
"packaging"
"ECRa"

Furthermore, we can easily see the most common words in the corpus

> sort(freqTable(debates.tok), dec =

the
10729
a
2775
have
1121

or generate a list of unique tokens:

, . of to
9386 6266 5711 5498
for on be
2384 1873 1669 1603
AChs
1094

> u <- unique(debates.tok)

T)[1:20]
and in that is
4825 3269 3045 2832
this we it are
1573 1374 1195 1188

By default, tokenize () uses a simple regular-expression based tokenizer to break up the text,
but the package provides a number of pre-defined Tokenizer types and users are free to extend this
base class to define their own. For example, to emulate the tokenizing done within tm’s termFreq()
function we might define a custom Tokenizer like so:

> setClass("TmTokenizer", representation("Tokenizer",
+ fun = "function"))

[1] "TmTokenizer"

> TmTokenizer <- function() new("TmTokenizer",

+ fun = function(x) unlist(strsplit(gsub("[~[:alnum:]]+",

+ moeo x), " ", fixed = TRUE)))

> setMethod("tokenize", signature(object = "character",

+ tokenizer = "TmTokenizer", index = "missing"),

+ function(object, tokenizer, index) tokenizer@fun(object))

[1] "tokenize"

While our TmTokenizer relies on R’s regular expression engine to identify tokens, RSNL’s Regex—
Tokenizer type allows users to define arbitrary regex-based tokenizers that match strings using
the—often substantially faster—Python regular expression engine. For example, we might construct
a very simple tokenizer that splits strings solely on whitespace using the following definition (the
second argument tells the tokenizer to match the spaces in between tokens, rather than tokens):*

> space.breaker <- RegexTokenizer ("\\s+", matchToken = FALSE)

Note that all three tokenizers we’ve used thus far generate slightly different representations of the
underlying text.

> tokenize(debates[[1]])

[1] "ACAaACAa" "The" "next"
[4] n item“ n iS n “the"
[7] llreport n n (n IIA6 n
[10] n_n noo27n ||/||
[13] u2004u n) n "by"
[16] "Mrs" "Corbey" "on"
[19] "the" "draft" "European"
[22] "Parliament" "and" "Council"
[25] "Directive" "amending" "Directive"
[28] ll94|l Il/ll ||62Il
[31] ll/ll IIECH "On"
[34] "packaging" "and" "packaging"
[37] "waste" "o "RGAs"

> tokenize(debates[[1]], TmTokenizer())

4Note the double-escaping of character classes.

[1] uACn nACu "The"

[4] "next" "item" "isg"

[7] "the" "report" "AG"

[10] "0027" "12004" "by"

[13] "Mrs" "Corbey" "on"

[16] "the" "draft" "European"
[19] "Parliament" "and" "Council"
[22] "Directive" ‘"amending" "Directive"
[25] "94" "e2" "EC"

[28] "on" "packaging" "and"

[31] "packaging" '"waste" "AC"

> tokenize(debates[[1]], space.breaker)

[1] "ACASACA&" "The" "next"

[4] "item" "is" "the"

[7] "report" " "A6-0027/2004"
[(10] ")" "by" "Mrs"
[13] "Corbey" "on" "the"
[16] "draft" "European" "Parliament"
[19] "and" "Council" "Directive"
[22] "amending" "Directive" "94/62/EC"
[25] "on" "packaging" "and"
[28] "packaging" "waste." "ACAE"

In what follows, we’ll use the TokenizedCorpusView named debates.tok that we created with the
default tokenizer.

3.2 Filters and Transforms

As we mentioned at the beginning of Section 3, we're going to need to transform our text in a
number of ways to make it amenable to analysis. First of all, because it has little impact on the
readability of the text, we’ll start out by using tm’s tmpMap() function to convert our text to
lower-case.

> debates.tok

A tokenized corpus view with 183842 total tokens and 9035 unique tokens
> tmMap (debates, tmTolower)

A text document collection with 475 text documents

> debates.tok

A tokenized corpus view with 183842 total tokens and 8299 unique tokens

This sequence of operations illustrates one nice perk of RSNL’s object-view model: auto-updating.
As we previously noted, View objects maintain references to the objects that they view. One advan-
tage of this approach is the ability to quickly examine an original document in light of something
one finds in a view; another is that views can keep track of when anything changes in the underlying
data structure and update to reflect modifications. This auto-updating ability saves users from the
tedious task of redefining views after making changes to a corpus.

3.3 Token Transforms and Filters

Now let’s perform some more destructive manipulations, using the view model to preserve the
corpus:

> debates.tok <- filterTokens(debates.tok)

> debates.tok <- filterTokens (debates.tok,

+ PunctTokenFilter())

> debates.tok <- filterTokens (debates.tok,

+ FunctionalTokenFilter (function(x) nchar(x) >
+ 3))

> debates.tok <- transformTokens (debates.tok,

+ RegexTokenTransform("~[0-9]+$", "NUMBER"))
> debates.tok <- stem(debates.tok)

> debates.tok <- filterTokens (debates.tok,

+ TokenDocFreqFilter (debates.tok, 0.05,

+ 0.95))

> debates. tok

A tokenized corpus view with 42251 total tokens and 471 unique tokens

> sort(freqTable(debates.tok), dec = T)[1:20]

european propos commiss NUMBER
847 713 674 544
programm direct amend presid
521 497 463 447

Rehs report parliament committe
437 359 355 314
support time protect europ
306 276 268 264
peopl energi safeti thank
260 259 252 252

These operations take advantage of the filterTokens (), transformTokens (), and stem() meth-
ods to filter out common English words,? remove all-punctuation tokens, filter tokens shorter than
three characters in length, convert all-numeric tokens to the catch-all token “NUMBER”, reduce
the tokens to common roots, and filter out tokens that occur in less than five or more than 95
percent of the documents. Note that the views perform lazy updates and we perform virtually no
computation until requesting a printed representation of the view® in the next to last line of the
code snippet. As you can see, the resulting view provides a representation of the corpus with far
fewer tokens than the original tokenzied view. Visualizing a document from the view side-by-side
with its original form demonstrates the massive difference between the two representations:

> tokens(debates.tok[[1]])

5The default behavior of filterTokens() is to remove stop-words. To see a list of stopwords, type stop-
words ("english") at the R prompt.

SNote that printing a view to the screen is actually quite computationally costly because it calls freqTable,
unique, and documentTokenMatrix under the hood.

[1] "AcAs" "item" "report"

[4] "NUMBER" "NUMBER" "draft"

[7] "european" "parliament" "council"
[10] "direct" "amend" "direct"
[13] "packag" "packag"

> document (debates.tok[[1]])

[1] Ac¢AzAcAs the next item is the report (a6-0027/2004) by mrs corbey on the draft european j

Before moving on, note that transformTokens() and its brethren are, like tokenize (), capable
of operating on inputs ranging from basic character strings—in which case they return a vector of
tokens, appropriately filtered or transformed—to PCorpus and TokenizedView objects—in which
case they return TokenizedView objects of the appropriate type.

> stem(debates[[1]])

[1] "KeAs" "the" "next"
[4] n itemll llisll IIthe"
[7] llreport n n (Il ||a6ll
[10] n_n "0o27" ||/u
[13] ll2004l| ") n |Ibyll
[16] "mrs" "corbey" "on"
[19] "the" "draft" "european"
[22] "parliament" "and" "council"
[25] "direct" "amend" "direct"
[28] ll94|l n/u “62"
[31] ll/ll "eC“ "OII"
[34] "packag" "and" "packag"
[37] llwast n n . n IIEC n

> stem(debates)
A tokenized corpus view with 183842 total tokens and 5185 unique tokens

> stem(debates, tokenizer = PunktWordTokenizer(),
+ index = 1)

A tokenized document view of A6-0027/2004.1 with 30 total tokens and 24 unique tokens

Our flexible transform and filter object model also makes it easy to construct non-standard views
of the data. In the above example we use a RegexTokenTransform object to transform numbers
to a single token and the flexible FunctionalTokenFilter type to eliminate short tokens. These
objects are accompanied by a variety of other TokenTransform and TokenFilter object types, and
the user may readily extend these base classes as needed.” As another example, while we might
use the tokenized representation in debates.tok as the basis for a unigram-focused bag-of-words
analysis of the data, we might also want to represent the document in terms of pairs consecutive
words. We can do this using a FunctionalTokenTransform object:

"Most common extensions can be performed with appropriate sub-classing of the FunctionalTokenTransform and
FunctionalTokenFilter types.

x + 1))

B

>
+
+
+
+
+
>
+

bigTrans))

bigTrans <- FunctionalTokenTransform(function(x) {
index <- lapply(1:length(x), function(x) seq(x,

sapply(index, function(y) paste(x[y],
collapse = " "))

(debates.bigram <- transformTokens (debates.tok,

A tokenized corpus view with 42251 total tokens and 26914 unique tokens

> tokens(debates.bigram[[1]])

[1] "A¢éA3 item"

[3] "report NUMBER"

[5] "NUMBER draft"

"item report"
"NUMBER NUMBER"
"draft european"

[7] "european parliament" "parliament council"

[9] "council direct"

[11] "amend direct"

[13] "packag packag"

"direct amend"
"direct packag"
"packag NA"

> sort(freqTable(debates.bigram), dec = T)[1:20]

Réhs presid NUMBER NUMBER
261 241
european union ladi gentlemen
189 133
commiss propos drive licenc
128 105
european parliament madam presid
89 86
presid commission Kéhs madam
85 76
public health food safeti
65 62
presid ladi parliament council
61 58
energi effici thank rapporteur
55 55
tran european committe environ
54 49
health food commission ladi
49 48

At this point we are ready to do some analysis. As a simple example, we might simply wish
to visualize how similar our speeches are to one another. We can use an unsupervised clustering
technique to visualize the data in this way. To do this we generate a document-token matrix from
our tokenized view (as a TermDocMatrix object), calculate the euclidean distances between the

rows of the matrix, cluster, and plot the result:

10

> dist.tok <- dist(documentTokenMatrix(debates.tok,
+ weightTfIdf))

> clust.tok <- hclust(dist.tok)

> plot(clust.tok)

Cluster Dendrogram

2 -

§ -
. 8- 'f"ﬁ'ﬁ.[-’*'?ﬁ
_qg)) hl\"\,h‘h
T

o

dist.tok
hclust (*, "complete™)

3.4 Document Filters

So far we’ve restricted our transforms and filters to operations on individual tokens but we can
also filter out particular documents from a CorpusView.® For example, the 475 speeches in our
dataset come from a smaller set of debates on particular pieces of legislation. During the debate,
the rapporteur—the member of the European Parliament responsible for guiding the legislation
through parliament—almost always gives a short informational speech describing the bill. We can
take advantage of the meta-data attached to our corpus to identify the rapporteur speeches in the
dataset. Furthermore, we can use this information to generate a filtered view of the data and try our
simple visualization technique again, using only the rapporteurs’ speeches, in hopes of generating
a representation of the data that can tell us something about the similarity of the topics under
debate.

8As a rule, we leave transformation of entire documents to tm.

11

Cluster Dendrogram

1))

— £5002/1920-9V
€°500¢/2E10-9V
£'6002//920-9V
€'500¢/8TT0-9V
¢¢'S002/TET0-9V
6°500¢/9vT0-9V
~5'§00¢/€500-9V
. £'5002/€9¢0-9V
£:500¢/6610-9V
£'500¢/TET0-9V
€'500¢/70T0-9V
'G00¢/G00-9V
£'500¢/80T0-9V
£°500¢/€8¢0-9V
L£'G00¢/¢1¢0-9Y
£'500¢/8£00-9V
7'S00¢/0TE0-9V
£:600¢/9710-9V
£'6002/, £10-9V
€'500¢/0E€T0-9V
£'G00¢/T6T0-9V
€:500¢/rcT0-9V

€°'500¢/8¢T0-9V
€'500¢2/.¥20-9V
€'9002/v17¢0-9V

€'5002/T900-9V

FunctionalDocumentFilter (function(x) rap

weightTfIdf))
> clust.rap <- hclust(dist.rap)

> rap <- sapply(debates, meta, tag = "ISRAPPORTEUR")
> plot(clust.rap)

> debates.rap <- filterDocuments (debates.tok,
> dist.rap <- dist(documentTokenMatrix(debates.rap,

+

€'17002/€€00-9V
€'500¢/6920-9V
I

I I I
08T 00T 08 0

wbIeH

12

dist.rap
hclust (*, "complete")

