
An Introduction to RSNL

Anthony Fader, Gary King, Daniel Pemstein, and Kevin Quinn

August 31, 2009

1 Introduction

RSNL (R Statistics with Natural Language) provides R programmers with access to an aRSeNaL of
natural language processing (NLP) tools they can use without leaving the R environment. RSNL
relies on S4 classes and generic functions to present programmers with a simple, uniform, and ex-
tensible interface to natural language processing in R. Specifically, it provides a suite of methods
for common natural language tasks (e.g. tokenization, stemming, part-of-speech tagging, and topic
modeling) and a collection of extensible S4 objects (e.g. tokenizers, stemmers, taggers, and topic
model objects) to use when carrying out these operations. Furthermore, RSNL’s toolset allows the
user to keep track of relationships between chunks of text—and decompositions and summaries of
those bits of text—throughout the analysis process, using an object-view model to provide multiple,
concurrent, representations of an underlying collection of texts. This object-view approach facili-
tates exploratory data analysis while simultaneously providing a powerful sub-structure upon which
to build high-level NLP analysis and visualization software. Finally, while most publicly available
NLP toolkits are designed to meet the needs of natural language research, RSNL is intended to
facilitate NLP-based analyses by applied researchers, particularly those in the social and behavioral
sciences, and is tuned to their problems and their datasets.

This document provides a short, example-based, introduction to RSNL that demonstrates how
to prepare a text collection to interact with RSNL’s toolset, how to pre-process the text using
a combination of tm-based and RSNL-provided tools, how to extend and adapt these tools, and
how to apply NLP tools to the text collection to produce multiple views of a text collection, or
corpus. As development on RSNL progresses, this document will also demonstrate how to use
RSNL to better keep track of corpus structure and meta-data, and explain the range of clustering
and classification methods, visualization tools, discourse modeling and testing techniques, and topic
modeling methods included in the RSNL toolkit.

2 Preparing a Dataset for Analysis

RSNL builds upon the text-processing middle-ware layer provided by the tm package to provide
a multitude of text processing and modeling tools. RSNL relies on tm[1] to handle text input-
output, data management and storage. tm provides S4 types—the TextDocument and Corpus
classes—that allow users to represent, examine, and manipulate individual chunks of text (typically
individual documents) and large corpora of related documents. Additionally, these basic data
types sport fields for maintaining detailed metadata about the underlying text. Furthermore,
tm includes a wide array of I/O tools, including readers and writers for various document formats,
back-end database support, and functions that allow users to apply transformations and filters to

1

an individual document or corpus with relative ease. Finally, tm provides a simple object, the
DocumentTermMatrix, for representing corpora in terms of document-level word frequencies.

RSNL works intimately with tm to prepare a text collection for higher level analysis; RSNL
users will typically adopt the following work-flow when preparing a set of documents for analysis:

1. The user will use tm’s text I/O tools to read a collection of documents into R and create a
Corpus object.

2. The user will construct an RSNL RSNLCorpus object from the newly minted Corpus to best
take advantage of RSNL’s collection of tools.

3. The user will transform and filter the data as necessary to prepare it for higher-level analysis;
during this step, one will make use of tm’s mapping and filtering functions to perform tasks
that destructively modify the text collection, while relying on RSNL’s collection of tokenizers,
stemmers, transforms, and filters to create a variety of non-destructive views of the underlying
dataset.

The rest of this section explains this process in detail.

2.1 Working with Corpus Objects

Throughout this document we will work with an example dataset containing a selection of 475
short speeches given by legislators and bureaucrats during debates on legislation in the European
Parliament (EP). The speeches are a (non-random) sample from a larger dataset of EP debates
[3]. The dataset has a hierarchical structure and each speaker delivered her speech as part of a
debate dedicated to a particular piece of legislation. Specifically, each speech fits into one of the
first 29 debates on Codecision1 legislation conducted by the Parliament in its 6th (current) term.
These data ship with RSNL as a series of XML documents which contain both the raw text of the
speeches and a variety of meta-data.

Figure 1 displays one of the XML documents in the example dataset. Each file is composed
of four main sections. The first section contains the bill’s title, unique EP code, date of debate,
position on the day’s debate schedule, the last name of the member of the EP (MEP) responsible
for reporting on the bill, a number indicating one of eight policy issue areas assigned to the bill
by EU bureaucrats, a dummy variable indicating whether or not the reading of the bill survived
a vote on the legislation as a whole, and a binary indicator of whether or not that final vote was
conducted by public roll call. The second section provides speaker-specific information including
the speaker’s name (or title, if the speaker is acting in a purely institutional role), the country and
parliamentary party group the speaker represents (if applicable), and a series of dummy variables
describing the speaker’s institutional role vis-a-vis the given piece of legislation. Finally, the third
section of the xml file contains a single indicator identifying the chronological position of the speech
in the debate while the fourth section sports the raw text of the speech itself.

tm represents collections of documents using the Corpus data structure which can read text
from a disk or other Source using either a pre-defined or custom reader function. Therefore, our
first step in any analysis of the EP speeches will be to construct a tm-style reader and use it to
build a Corpus object from our XML files on disk.

1The European Parliament considers legislation under a variety of legislative procedures. Codecision is generally
considered the most important of these procedures although the particulars of EP protocol are of little consequence
to the current example.

2

<?xml version="1.0"?>
<DEBATE-SPEECH>
<!-- 1. Bill-specific meta-data -->
<BILL>
<TITLE> Packaging and packaging waste</TITLE>
<CODE>A6-0027/2004</CODE>
<DATE>2004-11-17</DATE>
<ITEM>5</ITEM>
<RAPPORTEUR>CORBEY</RAPPORTEUR>
<ISSUEAREA>3</ISSUEAREA>
<PASSED>1</PASSED>
<RCV>0</RCV>

</BILL>

<!-- 2. Speaker-specific meta-data -->
<SPEAKER>
<NAME>President</NAME>
<COUNTRY></COUNTRY>
<GROUP></GROUP>
<STATUS>
<ISPRESIDENT>1</ISPRESIDENT>
<ISCOUNCIL>0</ISCOUNCIL>
<ISCOMMISSION>0</ISCOMMISSION>
<ISOTHERBUREAUCRAT>0</ISOTHERBUREAUCRAT>
<ISRAPPORTEUR>0</ISRAPPORTEUR>
<ISCOMMITTEEREP>0</ISCOMMITTEEREP>
<ISAUTHOR>0</ISAUTHOR>
<ISONBEHALFOFGROUP>0</ISONBEHALFOFGROUP>

</STATUS>
</SPEAKER>

<!-- 3. Speaker ordering -->
<SPEAKER-NUMBER>1</SPEAKER-NUMBER>

<!-- 4. The text -->
<TEXT>
The next item is the report (A6-0027/2004) by Mrs Corbey
on the draft European Parliament and Council Directive amending
Directive 94/62/EC on packaging and packaging waste.

</TEXT>
</DEBATE-SPEECH>

Figure 1: An example EP speech in XML format.

3

> library(RSNL)

> library(XML)

> # Define a custom reader, see tm docs for details

> readSpeeches <- FunctionGenerator(function(...) {

+ function (elem, load, language, id) {

+ # 1. Get the xml nodes organized

+ tree <- xmlTreeParse(elem$content, asText = TRUE)

+ root <- xmlRoot(tree)

+ bill <- root[["BILL"]] # bill-specific data

+ speaker <- root[["SPEAKER"]] # speaker-specific data

+ status <- speaker[["STATUS"]] # institutional context dummies

+

+ # 2. Create the default meta-data fields

+ title <- paste(xmlValue(bill[["TITLE"]]), "-",

+ xmlValue(speaker[["NAME"]]), sep="")

+

+ dateTimeStamp <- as.POSIXct(xmlValue(bill[["DATE"]]), tz="CET")

+

+ id <- paste(xmlValue(bill[["CODE"]]),

+ xmlValue(root[["SPEAKER-NUMBER"]]), sep=".")

+

+ content <- xmlValue(root[["TEXT"]])

+

+ # 3. Construct the document

+ doc<-new("PlainTextDocument", .Data = content,

+ Author = "European Parliament",

+ DateTimeStamp = dateTimeStamp,

+ Origin = "http://www.europarl.europa.eu", Heading = title,

+ Language = language, ID= id)

+

+ # 4. Add some custom metadata

+ meta(doc, "SPEAKER-NUMBER") <- xmlValue(root[["SPEAKER-NUMBER"]])

+

+ for (name in c("CODE", "ISSUEAREA", "PASSED", "RCV"))

+ meta(doc, name) <- xmlValue(bill[[name]])

+

+ for (name in c("COUNTRY", "GROUP"))

+ meta(doc, name) <- xmlValue(speaker[[name]])

+

+ for (name in c("ISPRESIDENT", "ISCOUNCIL", "ISCOMMISSION",

+ "ISOTHERBUREAUCRAT", "ISRAPPORTEUR", "ISCOMMITTEEREP",

+ "ISAUTHOR", "ISONBEHALFOFGROUP"))

+ meta(doc, name) <- xmlValue(status[[name]])

+

+ doc

+ }

+ })

4

The readSpeeches() function in the code snipped above is a FunctionGenerator; that is, rather
than returning a standard object when called, readSpeeches() returns a function. Specifically,
each invocation of readSpeeches() returns a function that takes information about a single element
(that is, document) read from a source—the element itself, loading info which we ignore here, the
document language, and a document id—and returns a PlainTextDocument suitable for inclusion
in a Corpus. In this case, we use the xml package[5] to parse each EP speech in XML format and
populate the fields and metadata slots of each resulting PlainTextDocument.2 The first chunk of the
function returned by readSpeeches() sets up convenience handles to the XML nodes representing
the bill-specific meta-data, speaker-specific information, and the dummy variables related to the
institutional responsibilities of the speaker. Section two extracts a variety of specific fields from
the XML document and uses them to fill in the PlainTextDocument’s default fields; specifically,
it generates a title by concatenating the bill’s title to the speaker’s name, converts the date of the
debate into a timestamp, generates a document id by concatenating the bill code to the speaker’s
chronological position in the debate, and extracts the content of the speech itself. Next, section three
constructs the PlainTextDocument object using the variables extracted in the first two portions
of the function. Finally, the fourth and last chunk of code appends a variety of meta-data to
the PlainTextDocument, using tm’s meta() method. With this reader in hand, we can create
a connection to the EP dataset included with RSNL and pass the connection and reader to the
Corpus constructor provided by tm:

> debates.source <- system.file("samples/en/ep-debates", package="RSNL")

> tm.debates <- Corpus(DirSource(debates.source), readerControl =

+ list(reader = readSpeeches, language="EN"))

2.1.1 Corpora and Passing Semantics

Currently, Corpus objects may store their internal data either directly in memory, or in a simple
database format. When using in-memory storage, Corpus objects use R’s standard pass-by-value
semantics. This means that whenever a Corpus is passed to a function or method the interpreter
makes a copy of the object and any changes to the object made within the function are not reflected
in the original object. Furthermore, if we were to make a simple copy of tm.debates

> tm.debates.copy <- tm.debates

tm.debates.copy and tm.debates would represent distinct collections of text and changes to one
object would have no effect on the other. On the other hand, when a Corpus stores its data on
disk, it uses pass-by-reference semantics; in this case Corpus objects are essentially handles to an
underlying data store and multiple copies of the handle all refer to the same set of data. Under
these circumstances modifications to tm.debates.copy would be reflected in subsequent calls to
tm.debates.

This variance in Corpus passing semantics is simply a matter of practicality. When a Corpus
maintains its data in memory it is constrained by R’s default behavior to make copies of the text
it represents whenever copied or passed to a function. On the other hand, a Corpus object only
needs to copy its database handle when storing its text on disk; under these circumstances the tm
developers are able to conserve processor cycles and disk space by leaving the data in one place while

2The FunctionGenerator() function call in the above code acts only to set the type (i.e. FunctionGenerator)
of the resulting function-generating object. Remember that, in R, functions are objects and can carry type infor-
mation. For type safety, tm’s Corpus constructor expects all readers to be FunctionGenerator objects. In fact, the
code FunctionGenerator(function (...) function ()) is equivalent to new("FunctionGenerator", .Data =

function (...) function ()).

5

allowing the user to manipulate references to the underlying data in R itself. Yet, while logical,
these implementation-dependent differences in Corpus passing semantics may risk some potential
confusion for users and, in the case of in-memory storage, inefficiency.

2.1.2 RSNLCorpus and Reference Objects

RSNL provides a wrapper class for Corpus objects, RSNLCorpus, that unifies corpus semantics.
RSNLCorpus objects behave exactly like Corpus objects3 except that they use pass-by-reference
semantics regardless of their underlying storage model. Furthermore, they provide under-the-hood
tools that facilitate the data-view model employed by RSNL which we describe in more detail
below. Thus, the second step in any RSNL analysis is to convert a corpus represented by tm’s
Corpus type into a RSNLCorpus. Doing this is exceedingly simple; one need only pass an existing
Corpus to the RSNLCorpus constructor:

> debates <- RSNLCorpus(tm.debates)

RSNLCorpus objects are an example of a non-standard type of S4 object used throughout RSNL:
RObject or reference objects. These objects pass one or more of their internal slots by reference
when one makes a copy or passes the object to a function. It is possible to force the interpreter to
make a pure copy of a RObject using the clone() method:

> debates.copy <- clone(debates) # 1

> debates.copy.ref <- debates.copy # 2

> debates.copy[[1]] <- debates.copy[[2]] # 3

> debates[[1]] == debates.copy[[1]] # 4

[1] FALSE

> debates.copy.ref[[1]] == debates.copy[[1]] # 5

[1] TRUE

It is worth walking through the above example, step by step, to make the distinction between a
reference and a pure copy absolutely clear. In step one we take the RSNLCorpus debates, which
stores its text data in memory, and make a pure copy of it called debates.copy. At this point we
have two full copies of the corpus in memory. In step two we make a reference to debates.copy
called debates.copy.ref. This step does not make an additional copy of the underlying corpus
and debates.copy and debates.copy.ref behave simply as two different names for the same
underlying dataset. In step three we take advantage of the subset operator for RSNLCorpus ob-
jects, which allows us to access a single document within a corpus, to overwrite the first document
in debates.copy with the second document in the same corpus. Steps four and five demon-
strate how this modification is reflected in the three RSNLCorpus objects and highlight the fact
that debates and debates.copy reference distinct underlying datasets while debates.copy and
debates.copy.ref reference a single, shared, corpus.

3At the current stage of development this not quite true: we have not implemented the c() method for RSNLCorpus
objects, nor have we tested their compatibility with tm’s lazy mapping facilities.

6

2.2 Tokenization and View Construction

Natural language models typically rely on patterns of tokens within the data. Tokens are often
individual words, but can, in principle, represent the output of any procedure that splits a single
piece of text into individual chunks. In this example, we’ll take the traditional approach to tok-
enization and attempt to represent, or view, each document in the corpus as a series of individual
words. To do so, we need to clean up the text a bit—transform the text to all lowercase, remove
punctuation, numbers (which we’ll represent using a single token), and common words—and do the
actual tokenization. In this example, we’ll also employ a common technique known as stemming,
which reduces similar words with different suffixes (e.g. run, runner, running) to common roots
(e.g. run). Finally, we’ll ignore especially short words when modeling the text.

The above-mentioned procedures all do varying degrees of violence to the original text. In
English, converting the documents to lowercase will have little impact on our ability to refer back
to and understand the content of the original documents while performing an exploratory analysis,
but other operations, such as transforming or eliminating certain symbols or strings, tokenizing, and
stemming, can render the original text unreadable. RSNL takes advantage of an object-view model
to help overcome this issue. When performing basic text-cleaning operations, such as converting
the text to lower case, the analyst will often wish to employ tm’s various filtering and mapping
tools to modify the Corpus itself. But when performing more destructive operations the analyst can
benefit by creating views of the underlying Corpus, or its constituent documents, that encapsulate
both a reference to the original text and a policy for transforming the text in some way. Of course,
there is a trade-off here: iteratively modifying the text in place requires less storage space than the
object-view approach and may be necessary with large datasets; on the other hand, the object-view
model makes it far easier for the analyst to refer back to the underlying data and work with multiple
representations (views) of the data at once, and will generally use fewer resources than maintaining
a copy of the corpus for each desired representation of the data.

2.2.1 Working with Tokenized Views

We’ll start by constructing a simple tokenized view of the corpus. RSNL provides a method,
tokenize() that can generate tokens from a variety of data types. At the most basic level, given
a character object (or child type such as tm’s PlainTextDocument), tokenize() will return a
vector of tokens:

> tokenize(debates[[1]])

[1] "The" "next" "item"
[4] "is" "the" "report"
[7] "-LRB-" "A6-0027" "\\/"
[10] "2004" "-RRB-" "by"
[13] "Mrs" "Corbey" "on"
[16] "the" "draft" "European"
[19] "Parliament" "and" "Council"
[22] "Directive" "amending" "Directive"
[25] "94\\/62\\/EC" "on" "packaging"
[28] "and" "packaging" "waste"
[31] "."

On the other hand, given a RSNLCorpus, tokenize() will generate a view of that corpus:

7

> (debates.tok <- tokenize(debates))

A tokenized corpus view with 179959 total tokens and 9265 unique tokens

In some cases, one might wish to obtain a view of a single document within a corpus. In this case, a
user may employ the index argument to tokenize() to select an individual document from within
the corpus.4 For example, this code creates a view of the first document in debates:

> (debates.tok.1 <- tokenize(debates, index=1))

A tokenized document view of A6-0027/2004.1 with 31 total tokens and 26 unique tokens

debates.tok and debates.tok.1 are examples of View objects; specifically, debates.tok is a
TokenizedCorpusView and debates.tok.1 is a TokenizedDocumentView, both of which are sub-
types of the TokenizedView, and more generically, View virtual classes. All View objects provide
a representation of a given RSNLCorpus object. Each view maintains a reference to a RSNLCorpus
and encapsulates a policy for representing that corpus. For example, a TokenizedCorpusView
of debates contains a reference to debates and information about the Tokenizer object5 used to
break the text in debates into individual tokens. Similarly, a TokenizedDocumentView references a
single document within a RSNLCorpus while maintaining a policy for representing that document as
a sequence of tokens.6 Furthermore, Views use a lazy approach and perform no actual computation
until absolutely necessary. This means that, when you use tokenize() to create a view of a given
corpus, the method performs no actual tokenization, but rather constructs a View that is committed
to representing the corpus in a particular (tokenized) way. The tokenization only occurs when the
user invokes further methods on the TokenizedView, as we discuss below.

We can examine our TokenizedViews with a variety of methods. For example, given the two
views we just constructed, we can look at the tokens within the first document in the corpus in one
of two ways:

> tokens(debates.tok[[1]])

[1] "The" "next" "item"
[4] "is" "the" "report"
[7] "-LRB-" "A6-0027" "\\/"
[10] "2004" "-RRB-" "by"
[13] "Mrs" "Corbey" "on"
[16] "the" "draft" "European"
[19] "Parliament" "and" "Council"
[22] "Directive" "amending" "Directive"
[25] "94\\/62\\/EC" "on" "packaging"
[28] "and" "packaging" "waste"
[31] "."

> tokens(debates.tok.1)

4Note that a view of a document maintains a policy for representing the document (in this case a tokenization
policy) while keeping track of what corpus the document comes from. Thus, applying tokenize to a corpus and using
the index argument is quite distinct from applying tokenize directly to a document within a corpus, which simply
generates a vector of tokens. We discuss views in greater detail below.

5We describe Tokenizer objects in more detail below.
6Note that views are only defined in reference to RSNLCorpus objects. Therefore, you can not create a view to a

document not contained in a corpus.

8

[1] "The" "next" "item"
[4] "is" "the" "report"
[7] "-LRB-" "A6-0027" "\\/"
[10] "2004" "-RRB-" "by"
[13] "Mrs" "Corbey" "on"
[16] "the" "draft" "European"
[19] "Parliament" "and" "Council"
[22] "Directive" "amending" "Directive"
[25] "94\\/62\\/EC" "on" "packaging"
[28] "and" "packaging" "waste"
[31] "."

Furthermore, we can easily see the most common words in the corpus

> sort(freqTable(debates.tok), dec=T)[1:20]

the , . of to and in that is
10727 9467 6253 5710 5489 4823 3261 3045 2832

a for I on be this we it are
2752 2383 1871 1665 1603 1573 1374 1195 1188
not have
1157 1121

or generate a list of unique tokens:

> u <- unique(debates.tok)

Each of these operations requires the view to invoke its policy—the Tokenizer it encapsulates—on
the RSNLCorpus it refers to. The first code snippet requires only that the view tokenize the first
document in the corpus, but the latter two examples require the view to tokenize the entire corpus.
If you perform these actions in order you will notice that the interpreter spends substantially more
time generating the frequency table than it does generating the unique tokens. This is because the
view stores the results of previous computations for later use and need not re-tokenize the corpus
when generating the list of unique terms.7

By default, tokenize() uses a tokenizer that breaks up the text according to Penn Treebank
conventions, but the package provides a number of pre-defined Tokenizer types and users are free
to extend this base class to define their own. For example, to emulate the tokenizing done within
tm’s termFreq() function we might define a custom Tokenizer like so:

> setClass("TmTokenizer", representation("Tokenizer", fun="function")) # 1

[1] "TmTokenizer"

> TmTokenizer <- function () # 2

+ new("TmTokenizer", fun = function (x)

+ unlist(strsplit(gsub("[^[:alnum:]]+", " ", x), " ", fixed = TRUE)))

> setMethod("tokenize", signature(object="character", # 3

+ tokenizer="TmTokenizer",

+ index="missing"),

+ function (object, tokenizer, index) tokenizer@fun(object))

7One can adjust a view’s storage behavior using the keepComputed() and keepDocumentViews() methods.

9

[1] "tokenize"

In the first step (1) we define a new S4 class, TmTokenizer, that extends the base Tokenizer
class and includes a slot for a tokenizing function. Next (2) we create a constructor function
for TmTokenizers that takes no arguments and returns a TmTokenizer object with a set tok-
enizing function that uses R’s regular expression tools to remove all of the non-alpha-numeric
characters from a character string and converts the string into tokens by splitting the string
at spaces. Finally, (3) we implement a specialization of the tokenize() method for the signa-
ture signature(object="character", tokenizer="TmTokenizer", index="missing") so that,
when one passes a character object and a TmTokenizer to tokenize(), it takes the given string and
applies the set tokenizing function to that string, returning a sequence of tokens. In general, when
implementing a new Tokenizer called, say, MyTokenizer, one need only implement the specializa-
tion of tokenize() for the signature signature(object="character", tokenizer="MyTokenizer",
index="missing"); RSNL provides the rest of the method specializations necessary to make the
Tokenizer work with RSNLCorpus and View objects.

While our TmTokenizer relies on R’s regular expression engine to identify tokens, RSNL’s
RegexTokenizer type allows users to define arbitrary regex-based tokenizers that match strings
using the—often substantially faster—Java regular expression engine. For example, we might con-
struct a very simple tokenizer that splits strings solely on whitespace using the following definition
(the second argument tells the tokenizer to match the spaces in between tokens, rather than to-
kens):8

> space.breaker <- RegexTokenizer("\\s+", matchToken = FALSE)

Note that all three tokenizers we’ve used thus far generate slightly different representations of the
underlying text. The tokenize() method takes a Tokenizer as its second argument. Thus, the
three calls below call tokenize() with the default tokenizer, a TmTokenizer, and using our custom
RegexTokenizer, respectively:

> tokenize(debates[[1]])

[1] "The" "next" "item"
[4] "is" "the" "report"
[7] "-LRB-" "A6-0027" "\\/"
[10] "2004" "-RRB-" "by"
[13] "Mrs" "Corbey" "on"
[16] "the" "draft" "European"
[19] "Parliament" "and" "Council"
[22] "Directive" "amending" "Directive"
[25] "94\\/62\\/EC" "on" "packaging"
[28] "and" "packaging" "waste"
[31] "."

> tokenize(debates[[1]], TmTokenizer())

[1] "The" "next" "item"
[4] "is" "the" "report"
[7] "A6" "0027" "2004"

8Note the double-escaping of character classes.

10

[10] "by" "Mrs" "Corbey"
[13] "on" "the" "draft"
[16] "European" "Parliament" "and"
[19] "Council" "Directive" "amending"
[22] "Directive" "94" "62"
[25] "EC" "on" "packaging"
[28] "and" "packaging" "waste"

> tokenize(debates[[1]], tokenizer=space.breaker)

[1] "The" "next" "item"
[4] "is" "the" "report"
[7] "(" "A6-0027/2004" ")"
[10] "by" "Mrs" "Corbey"
[13] "on" "the" "draft"
[16] "European" "Parliament" "and"
[19] "Council" "Directive" "amending"
[22] "Directive" "94/62/EC" "on"
[25] "packaging" "and" "packaging"
[28] "waste."

In what follows, we’ll use the TokenizedCorpusView named debates.tok that we created with the
default tokenizer.

2.3 Filters and Transforms

As we mentioned at the beginning of section 2.2, we’re going to need to transform our text in
a number of ways to make it amenable to analysis. First of all, because it has little impact on
the readability of the text, we’ll start out by using tm’s tmpMap() function to convert our text to
lower-case.

> debates.tok

A tokenized corpus view with 179959 total tokens and 9265 unique tokens

> tmMap(debates, tmTolower)

A corpus with 475 text documents

> debates.tok

A tokenized corpus view with 179958 total tokens and 8535 unique tokens

This sequence of operations illustrates one nice perk of RSNL’s object-view model: auto-updating.
As we previously noted, View objects maintain references to the objects that they view. One advan-
tage of this approach is the ability to quickly examine an original document in light of something
one finds in a view; another is that views can keep track of when anything changes in the underlying
data structure and update to reflect modifications. This auto-updating ability saves users from the
tedious task of redefining views after making changes to a corpus, something that can save many
key-strokes—or executions of the source() function—when one performs an exploratory analysis
on a dataset.

11

2.3.1 Token Transforms and Filters

As demonstrated briefly above, one can use tm’s tmMap() method to modify the text contained
within a RSNLCorpus object. Nonetheless, this approach modifies the corpus directly and, as we
previously argued, it may often be useful to work with numerous modified representations of the text
without rendering the corpus unreadable. Therefore, we’ll use RSNL’s filtering and transformation
methods to take care of the more destructive tasks we need to perform to get the dataset ready for
analysis and generate filtered and transformed TokenizedCorpusViews of the underlying corpus to
get these jobs done:

> debates.tok <- filterTokens(debates.tok) #1

> debates.tok <- filterTokens(debates.tok, #2

+ PunctTokenFilter())

> debates.tok <- filterTokens(debates.tok, #3

+ FunctionalTokenFilter(function (x) nchar(x) > 3))

> debates.tok <- transformTokens(debates.tok, #4

+ RegexTokenTransform("^[0-9]+$", "NUMBER"))

> debates.tok <- stem(debates.tok) #5

> debates.tok <- filterTokens(debates.tok, #6

+ RegexTokenFilter("^[^a-zA-Z]+$", negate=TRUE))

> debates.tmp <- debates.tok # Save for bigrams example

> debates.tok <- filterTokens(debates.tok, #7

+ TokenDocFreqFilter(debates.tok, .05, .95))

> debates.tok

A tokenized corpus view with 41262 total tokens and 462 unique tokens

> sort(freqTable(debates.tok), dec=T)[1:20]

european propos commiss program
786 713 674 506

direct amend presid report
497 463 434 359

parliament NUMBER committe support
355 348 313 306
time protect europ peopl
273 267 257 255

energi safeti thank particular
254 252 252 249

These operations take advantage of RSNL’s filterTokens(), transformTokens(), and stem()
methods to (1) filter out common English words,9 (2) remove all-punctuation tokens, (3) filter
tokens shorter than three characters in length, (4) convert all-numeric tokens to the catch-all token
“NUMBER”, (5) reduce the tokens to common roots, (6) remove all remaining tokens comprised
completely of non-alphabetic characters, and (7) filter out tokens that occur in less than five or
more than 95 percent of the documents.

Some of these transformations and filter operations are less self-explanatory than others. Most
notably, take step (3), which makes use of the flexible FunctionalTokenFilter type to eliminate

9The default behavior of filterTokens() is to remove stop-words. To see a list of stopwords, type stop-

words("english") at the R prompt.

12

especially short tokens from the view. The FunctionalTokenFilter constructor takes a function
as its first argument. This function provides the filter with a policy for manipulating a sequence
of tokens; specifically it is expected to take a single argument—a vector of tokens—and return a
logical vector of the same length, indicating which tokens to retain in the filtered view. In (3),
the function returns a vector of logical values, with only those slots corresponding to tokens with
more than three characters set to TRUE.

Note that, because the views use lazy updates, we perform virtually no computation until
requesting a printed representation of the view10 in the next to last line of the code snippet. As
you can see, the resulting view provides a representation of the corpus with far fewer tokens than the
original tokenized view. Visualizing a document from the view side-by-side with a simple tokenized
version of the original demonstrates the massive difference between the two representations:

> tokens(debates.tok[[1]])

[1] "item" "report" "-LRB-"
[4] "NUMBER" "-RRB-" "draft"
[7] "european" "parliament" "council"
[10] "direct" "amend" "direct"
[13] "packag" "packag"

> tokenize(debates[[1]])

[1] "the" "next" "item"
[4] "is" "the" "report"
[7] "-LRB-" "a6-0027" "\\/"
[10] "2004" "-RRB-" "by"
[13] "mrs" "corbey" "on"
[16] "the" "draft" "european"
[19] "parliament" "and" "council"
[22] "directive" "amending" "directive"
[25] "94\\/62\\/ec" "on" "packaging"
[28] "and" "packaging" "waste"
[31] "."

Before moving on, note that transformTokens() and its brethren are, like tokenize(), capable
of operating on inputs ranging from basic character strings—in which case they return a vector
of tokens, appropriately filtered or transformed—to RSNLCorpus and TokenizedView objects—in
which case they return TokenizedView objects of the appropriate type.

> stem(debates[[1]])

[1] "the" "next" "item"
[4] "is" "the" "report"
[7] "-LRB-" "a6-0027" "\\/"
[10] "2004" "-RRB-" "by"
[13] "mrs" "corbey" "on"
[16] "the" "draft" "european"

10Note that printing a view to the screen is actually quite computationally costly because it calls freqTable,
unique, and documentTokenMatrix under the hood.

13

[19] "parliament" "and" "council"
[22] "direct" "amend" "direct"
[25] "94\\/62\\/ec" "on" "packag"
[28] "and" "packag" "wast"
[31] "."

> stem(debates)

A tokenized corpus view with 179958 total tokens and 5483 unique tokens

> stem(debates, tokenizer=RegexTokenizer(), index=1)

A tokenized document view of A6-0027/2004.1 with 37 total tokens and 29 unique tokens

Our flexible transform and filter object model also makes it easy to construct non-standard views
of the data. In the above example we use a RegexTokenTransform object to transform numbers
to a single token and the flexible FunctionalTokenFilter type to eliminate short tokens. These
objects are accompanied by a variety of other TokenTransform and TokenFilter object types, and
the user may readily extend these base classes as needed.11 As another example, while we might
use the tokenized representation in debates.tok as the basis for a unigram-focused bag-of-words
analysis of the data, we might also want to represent the document in terms of pairs of consecutive
words. We can do this using a FunctionalTokenTransform object:

> bigTrans <- FunctionalTokenTransform(# 1

+ function (x) { # 1a

+ index <- lapply(1:length(x), function (x) seq(x, x+1))

+ sapply(index, function (y) paste(x[y], collapse=" "))

+ })

> (debates.bigram <- transformTokens(debates.tmp, bigTrans)) # 2

A tokenized corpus view with 62280 total tokens and 47459 unique tokens

> debates.bigram <- filterTokens(debates.bigram, # 3

+ TokenDocFreqFilter(debates.bigram, .01, .95))

> tokens(debates.bigram[[1]])

[1] "item report" "report -LRB-"
[3] "NUMBER -RRB-" "european parliament"
[5] "parliament council" "council direct"
[7] "packag wast"

> sort(freqTable(debates.bigram), dec=T)[1:20]

european union ladi gentlemen
187 133

commiss propos drive licenc
120 100

european parliament -LRB- -RRB-

11Most common extensions can be performed with appropriate sub-classing of the FunctionalTokenTransform and
FunctionalTokenFilter types.

14

88 86
madam presid presid commission

85 84
public health food safeti

65 62
natura NUMBER NUMBER -RRB-

60 58
presid ladi parliament council

57 53
-RRB- NA thank rapporteur

51 51
committe environ environ public

49 48
energi effici health food

47 47

Here, we (1) construct a custom TokenTransform object of the type FunctionalTokenTransform to
perform the transformation and then (2) apply it to the TokenizedCorpusView with the transformTokens()
method. Finally, (3) we filter out especially common and uncommon bigrams (bigrams are sparser
than unigrams, so we relax our floor somewhat), as we did with the unigram data, and visualize
aspects of the resulting view. FunctionalTokenTransform is a versatile class that encapsulates
an arbitrary function representing a given token transformation rule in an object that behaves in
a manner expected by the transformTokens() method.12 The FunctionalTokenTransform con-
structor takes a single-argument function as its first argument and this function should take a vector
of tokens and return a transformed token vector. In the case of this example, our function (1a)
iterates through every pair of tokens in the passed-in vector and returns a vector of concatenated
pairs.

At this point we are ready to do some analysis. As a simple example, we might simply wish
to visualize how similar our speeches are to one another. We can use an unsupervised clustering
technique to visualize the data in this way. To do this we generate a document-token matrix from
our tokenized view (as a DocumentTermMatrix object), calculate the euclidean distances between
the rows of the matrix, cluster, and plot the result:

> dist.tok <- dist(documentTokenMatrix(debates.tok, weightTfIdf))

> clust.tok <- hclust(dist.tok)

> plot(clust.tok)

12Remember, the FunctionalTokenFilter type serves an analogous role in token filtering with filterTokens().

15

A
6−

00
61

/2
00

5.
3

A
6−

00
61

/2
00

5.
30

A
6−

01
30

/2
00

5.
2

A
6−

01
30

/2
00

5.
14

A
6−

02
83

/2
00

5.
2

A
6−

02
83

/2
00

5.
16

A
6−

00
33

/2
00

4.
3

A
6−

02
44

/2
00

5.
16

A
6−

02
44

/2
00

5.
3

A
6−

02
44

/2
00

5.
5

A
6−

02
44

/2
00

5.
8

A
6−

02
44

/2
00

5.
14

A
6−

02
44

/2
00

5.
4

A
6−

02
44

/2
00

5.
7

A
6−

02
44

/2
00

5.
6

A
6−

00
33

/2
00

4.
2

A
6−

02
44

/2
00

5.
13

A
6−

02
44

/2
00

5.
15

A
6−

00
33

/2
00

4.
5

A
6−

00
33

/2
00

4.
6

A
6−

02
69

/2
00

5.
3

A
6−

02
69

/2
00

5.
2

A
6−

02
69

/2
00

5.
4

A
6−

02
69

/2
00

5.
5

A
6−

02
69

/2
00

5.
11

A
6−

02
69

/2
00

5.
9

A
6−

02
69

/2
00

5.
16

A
6−

02
69

/2
00

5.
6

A
6−

02
69

/2
00

5.
13

A
6−

02
69

/2
00

5.
7

A
6−

02
69

/2
00

5.
12

A
6−

02
69

/2
00

5.
8

A
6−

02
69

/2
00

5.
18

A
6−

00
53

/2
00

5.
1

A
6−

02
47

/2
00

5.
34

A
6−

00
38

/2
00

5.
2

A
6−

00
38

/2
00

5.
12

A
6−

00
16

/2
00

5.
30

A
6−

00
16

/2
00

5.
3

A
6−

00
16

/2
00

5.
5

A
6−

00
16

/2
00

5.
27

A
6−

00
16

/2
00

5.
4

A
6−

00
16

/2
00

5.
22

A
6−

00
16

/2
00

5.
29

A
6−

00
16

/2
00

5.
2

A
6−

00
16

/2
00

5.
13

A
6−

00
53

/2
00

5.
4

A
6−

00
53

/2
00

5.
3

A
6−

00
53

/2
00

5.
2

A
6−

00
53

/2
00

5.
7

A
6−

01
32

/2
00

5.
3

A
6−

01
18

/2
00

5.
2

A
6−

01
31

/2
00

5.
3

A
6−

01
31

/2
00

5.
21

A
6−

02
67

/2
00

5.
2

A
6−

02
12

/2
00

5.
2

A
6−

02
12

/2
00

5.
3

A
6−

02
12

/2
00

5.
14

A
6−

00
61

/2
00

5.
2

A
6−

00
61

/2
00

5.
15

A
6−

00
61

/2
00

5.
9

A
6−

00
61

/2
00

5.
14

A
6−

00
61

/2
00

5.
25

A
6−

00
61

/2
00

5.
18

A
6−

00
61

/2
00

5.
5

A
6−

00
61

/2
00

5.
4

A
6−

00
61

/2
00

5.
11

A
6−

00
61

/2
00

5.
24

A
6−

00
61

/2
00

5.
21

A
6−

00
61

/2
00

5.
29

A
6−

00
61

/2
00

5.
26

A
6−

00
61

/2
00

5.
19

A
6−

00
61

/2
00

5.
20

A
6−

00
61

/2
00

5.
27

A
6−

00
61

/2
00

5.
7

A
6−

00
61

/2
00

5.
10

A
6−

00
61

/2
00

5.
22

A
6−

00
61

/2
00

5.
12

A
6−

00
61

/2
00

5.
16

A
6−

02
69

/2
00

5.
14

A
6−

01
37

/2
00

5.
2

A
6−

01
37

/2
00

5.
3

A
6−

00
99

/2
00

5.
3

A
6−

01
30

/2
00

5.
3

A
6−

01
30

/2
00

5.
13

A
6−

01
30

/2
00

5.
11

A
6−

01
30

/2
00

5.
9

A
6−

01
30

/2
00

5.
12

A
6−

01
46

/2
00

5.
3

A
6−

00
27

/2
00

4.
2

A
6−

00
27

/2
00

4.
10

A
6−

00
27

/2
00

4.
11

A
6−

01
31

/2
00

5.
2

A
6−

01
08

/2
00

5.
5

A
6−

01
08

/2
00

5.
2

A
6−

01
08

/2
00

5.
3

A
6−

01
99

/2
00

5.
3

A
6−

01
99

/2
00

5.
15

A
6−

01
32

/2
00

5.
5

A
6−

01
99

/2
00

5.
4

A
6−

01
99

/2
00

5.
6

A
6−

01
99

/2
00

5.
14

A
6−

01
99

/2
00

5.
17

A
6−

01
99

/2
00

5.
13

A
6−

01
99

/2
00

5.
12

A
6−

01
99

/2
00

5.
16

A
6−

01
99

/2
00

5.
8

A
6−

01
99

/2
00

5.
9

A
6−

02
67

/2
00

5.
6

A
6−

01
99

/2
00

5.
5

A
6−

01
99

/2
00

5.
18

A
6−

03
10

/2
00

5.
15

A
6−

00
53

/2
00

5.
5

A
6−

03
10

/2
00

5.
18

A
6−

03
10

/2
00

5.
10

A
6−

03
10

/2
00

5.
9

A
6−

03
10

/2
00

5.
12

A
6−

03
10

/2
00

5.
6

A
6−

03
10

/2
00

5.
8

A
6−

03
10

/2
00

5.
13

A
6−

03
10

/2
00

5.
7

A
6−

03
10

/2
00

5.
11

A
6−

03
10

/2
00

5.
19

A
6−

03
10

/2
00

5.
5

A
6−

03
10

/2
00

5.
17

A
6−

03
10

/2
00

5.
3

A
6−

03
10

/2
00

5.
16

A
6−

03
10

/2
00

5.
20

A
6−

02
67

/2
00

5.
11

A
6−

02
61

/2
00

5.
4

A
6−

02
61

/2
00

5.
5

A
6−

02
67

/2
00

5.
16

A
6−

02
67

/2
00

5.
17

A
6−

02
67

/2
00

5.
22

A
6−

02
67

/2
00

5.
15

A
6−

02
67

/2
00

5.
9

A
6−

02
67

/2
00

5.
13

A
6−

02
67

/2
00

5.
19

A
6−

01
91

/2
00

5.
4

A
6−

01
91

/2
00

5.
7

A
6−

01
28

/2
00

5.
13

A
6−

01
28

/2
00

5.
15

A
6−

01
28

/2
00

5.
8

A
6−

01
28

/2
00

5.
11

A
6−

01
28

/2
00

5.
10

A
6−

01
28

/2
00

5.
5

A
6−

01
28

/2
00

5.
12

A
6−

01
24

/2
00

5.
2

A
6−

01
28

/2
00

5.
16

A
6−

01
28

/2
00

5.
6

A
6−

01
28

/2
00

5.
9

A
6−

01
24

/2
00

5.
9

A
6−

01
24

/2
00

5.
8

A
6−

01
24

/2
00

5.
5

A
6−

01
28

/2
00

5.
14

A
6−

01
91

/2
00

5.
6

A
6−

00
27

/2
00

4.
9

A
6−

00
27

/2
00

4.
13

A
6−

02
44

/2
00

5.
2

A
6−

02
44

/2
00

5.
12

A
6−

01
99

/2
00

5.
11

A
6−

02
63

/2
00

5.
8

A
6−

01
08

/2
00

5.
4

A
6−

02
63

/2
00

5.
4

A
6−

02
12

/2
00

5.
8

A
6−

02
63

/2
00

5.
10

A
6−

01
18

/2
00

5.
4

A
6−

01
18

/2
00

5.
5

A
6−

01
18

/2
00

5.
6

A
6−

01
37

/2
00

5.
8

A
6−

01
37

/2
00

5.
15

A
6−

01
37

/2
00

5.
6

A
6−

01
37

/2
00

5.
10

A
6−

02
83

/2
00

5.
9

A
6−

01
34

/2
00

5.
9

A
6−

02
83

/2
00

5.
4

A
6−

02
83

/2
00

5.
7

A
6−

02
83

/2
00

5.
13

A
6−

02
83

/2
00

5.
11

A
6−

01
31

/2
00

5.
16

A
6−

01
31

/2
00

5.
7

A
6−

01
31

/2
00

5.
23

A
6−

01
31

/2
00

5.
6

A
6−

01
31

/2
00

5.
14

A
6−

01
31

/2
00

5.
12

A
6−

02
83

/2
00

5.
5

A
6−

02
83

/2
00

5.
8

A
6−

02
83

/2
00

5.
10

A
6−

02
63

/2
00

5.
12

A
6−

02
69

/2
00

5.
10

A
6−

02
63

/2
00

5.
9

A
6−

02
69

/2
00

5.
15

A
6−

02
69

/2
00

5.
17

A
6−

00
53

/2
00

5.
6

A
6−

02
12

/2
00

5.
7

A
6−

02
12

/2
00

5.
4

A
6−

02
12

/2
00

5.
9

A
6−

00
33

/2
00

4.
9

A
6−

02
12

/2
00

5.
16

A
6−

01
32

/2
00

5.
4

A
6−

01
32

/2
00

5.
6

A
6−

01
32

/2
00

5.
8

A
6−

02
63

/2
00

5.
5

A
6−

02
63

/2
00

5.
6

A
6−

02
63

/2
00

5.
7

A
6−

02
61

/2
00

5.
9

A
6−

02
61

/2
00

5.
8

A
6−

02
61

/2
00

5.
6

A
6−

02
61

/2
00

5.
7

A
6−

01
46

/2
00

5.
10

A
6−

00
38

/2
00

5.
6

A
6−

00
27

/2
00

4.
12

A
6−

01
37

/2
00

5.
4

A
6−

02
67

/2
00

5.
10

A
6−

02
67

/2
00

5.
7

A
6−

02
67

/2
00

5.
12

A
6−

02
67

/2
00

5.
14

A
6−

01
08

/2
00

5.
7

A
6−

01
08

/2
00

5.
10

A
6−

01
46

/2
00

5.
6

A
6−

01
37

/2
00

5.
9

A
6−

01
37

/2
00

5.
7

A
6−

01
37

/2
00

5.
13

A
6−

01
08

/2
00

5.
6

A
6−

00
99

/2
00

5.
13

A
6−

01
32

/2
00

5.
1

A
6−

02
47

/2
00

5.
1

A
6−

02
83

/2
00

5.
1

A
6−

01
99

/2
00

5.
1

A
6−

01
18

/2
00

5.
1

A
6−

01
34

/2
00

5.
1

A
6−

01
30

/2
00

5.
1

A
6−

00
99

/2
00

5.
1

A
6−

01
28

/2
00

5.
1

A
6−

01
24

/2
00

5.
1

A
6−

01
04

/2
00

5.
1

A
6−

01
91

/2
00

5.
1

A
6−

01
08

/2
00

5.
1

A
6−

01
31

/2
00

5.
1

A
6−

03
10

/2
00

5.
1

A
6−

02
44

/2
00

5.
1

A
6−

02
67

/2
00

5.
1

A
6−

02
61

/2
00

5.
1

A
6−

02
63

/2
00

5.
1

A
6−

02
69

/2
00

5.
1

A
6−

01
37

/2
00

5.
1

A
6−

00
38

/2
00

5.
1

A
6−

01
46

/2
00

5.
1

A
6−

02
12

/2
00

5.
1

A
6−

00
61

/2
00

5.
13

A
6−

00
61

/2
00

5.
17

A
6−

00
61

/2
00

5.
23

A
6−

00
99

/2
00

5.
12

A
6−

01
34

/2
00

5.
8

A
6−

02
83

/2
00

5.
14

A
6−

01
08

/2
00

5.
8

A
6−

01
46

/2
00

5.
7

A
6−

01
24

/2
00

5.
4

A
6−

01
04

/2
00

5.
6

A
6−

01
04

/2
00

5.
10

A
6−

00
99

/2
00

5.
11

A
6−

01
37

/2
00

5.
12

A
6−

01
32

/2
00

5.
9

A
6−

01
28

/2
00

5.
21

A
6−

01
04

/2
00

5.
9

A
6−

01
31

/2
00

5.
22

A
6−

01
46

/2
00

5.
9

A
6−

01
91

/2
00

5.
8

A
6−

00
33

/2
00

4.
10

A
6−

01
28

/2
00

5.
19

A
6−

00
61

/2
00

5.
31

A
6−

02
12

/2
00

5.
15

A
6−

01
34

/2
00

5.
12

A
6−

01
91

/2
00

5.
9

A
6−

01
32

/2
00

5.
11

A
6−

02
69

/2
00

5.
19

A
6−

01
37

/2
00

5.
17

A
6−

01
99

/2
00

5.
19

A
6−

01
31

/2
00

5.
24

A
6−

00
99

/2
00

5.
15

A
6−

01
04

/2
00

5.
11

A
6−

01
46

/2
00

5.
11

A
6−

01
08

/2
00

5.
12

A
6−

00
27

/2
00

4.
14

A
6−

00
38

/2
00

5.
13

A
6−

02
67

/2
00

5.
21

A
6−

03
10

/2
00

5.
23

A
6−

02
63

/2
00

5.
13

A
6−

02
61

/2
00

5.
10

A
6−

02
44

/2
00

5.
17

A
6−

01
30

/2
00

5.
15

A
6−

00
53

/2
00

5.
8

A
6−

00
16

/2
00

5.
31

A
6−

01
18

/2
00

5.
7

A
6−

01
37

/2
00

5.
5

A
6−

03
10

/2
00

5.
21

A
6−

00
16

/2
00

5.
17

A
6−

01
28

/2
00

5.
20

A
6−

00
27

/2
00

4.
1

A
6−

00
61

/2
00

5.
1

A
6−

00
33

/2
00

4.
1

A
6−

00
16

/2
00

5.
1

A
6−

00
16

/2
00

5.
18

A
6−

00
16

/2
00

5.
14

A
6−

02
12

/2
00

5.
5

A
6−

03
10

/2
00

5.
22

A
6−

01
37

/2
00

5.
11

A
6−

01
37

/2
00

5.
16

A
6−

00
38

/2
00

5.
4

A
6−

02
83

/2
00

5.
15

A
6−

03
10

/2
00

5.
14

A
6−

02
67

/2
00

5.
4

A
6−

02
63

/2
00

5.
11

A
6−

01
32

/2
00

5.
10

A
6−

01
37

/2
00

5.
14

A
6−

01
32

/2
00

5.
2

A
6−

01
32

/2
00

5.
7

A
6−

01
99

/2
00

5.
2

A
6−

02
67

/2
00

5.
5

A
6−

02
12

/2
00

5.
13

A
6−

02
83

/2
00

5.
6

A
6−

02
12

/2
00

5.
12

A
6−

00
61

/2
00

5.
28

A
6−

01
46

/2
00

5.
8

A
6−

02
47

/2
00

5.
31

A
6−

01
99

/2
00

5.
7

A
6−

01
99

/2
00

5.
10

A
6−

02
67

/2
00

5.
8

A
6−

02
67

/2
00

5.
18

A
6−

01
30

/2
00

5.
5

A
6−

01
30

/2
00

5.
7

A
6−

01
30

/2
00

5.
8

A
6−

01
30

/2
00

5.
10

A
6−

01
30

/2
00

5.
4

A
6−

01
30

/2
00

5.
6

A
6−

00
99

/2
00

5.
6

A
6−

00
99

/2
00

5.
7

A
6−

00
99

/2
00

5.
2

A
6−

00
99

/2
00

5.
14

A
6−

00
99

/2
00

5.
5

A
6−

00
99

/2
00

5.
8

A
6−

00
99

/2
00

5.
10

A
6−

00
27

/2
00

4.
5

A
6−

01
04

/2
00

5.
8

A
6−

01
46

/2
00

5.
2

A
6−

01
46

/2
00

5.
4

A
6−

01
46

/2
00

5.
5

A
6−

00
61

/2
00

5.
8

A
6−

01
04

/2
00

5.
7

A
6−

01
91

/2
00

5.
5

A
6−

00
27

/2
00

4.
4

A
6−

00
27

/2
00

4.
7

A
6−

00
27

/2
00

4.
8

A
6−

00
27

/2
00

4.
6

A
6−

02
83

/2
00

5.
17

A
6−

01
28

/2
00

5.
22

A
6−

01
24

/2
00

5.
11

A
6−

01
04

/2
00

5.
4

A
6−

01
04

/2
00

5.
2

A
6−

01
04

/2
00

5.
5

A
6−

02
47

/2
00

5.
10

A
6−

02
47

/2
00

5.
14

A
6−

02
47

/2
00

5.
24

A
6−

02
47

/2
00

5.
33

A
6−

02
47

/2
00

5.
16

A
6−

02
47

/2
00

5.
11

A
6−

02
47

/2
00

5.
32

A
6−

02
47

/2
00

5.
23

A
6−

02
47

/2
00

5.
28

A
6−

02
47

/2
00

5.
21

A
6−

02
47

/2
00

5.
25

A
6−

02
47

/2
00

5.
15

A
6−

02
47

/2
00

5.
29

A
6−

02
47

/2
00

5.
30

A
6−

02
47

/2
00

5.
8

A
6−

02
47

/2
00

5.
18

A
6−

02
47

/2
00

5.
22

A
6−

02
44

/2
00

5.
9

A
6−

02
12

/2
00

5.
10

A
6−

02
44

/2
00

5.
10

A
6−

00
33

/2
00

4.
4

A
6−

00
33

/2
00

4.
7

A
6−

02
44

/2
00

5.
11

A
6−

00
33

/2
00

4.
8

A
6−

00
33

/2
00

4.
11

A
6−

00
16

/2
00

5.
6

A
6−

00
16

/2
00

5.
26

A
6−

00
16

/2
00

5.
12

A
6−

00
16

/2
00

5.
25

A
6−

00
16

/2
00

5.
28

A
6−

00
16

/2
00

5.
15

A
6−

00
16

/2
00

5.
16

A
6−

00
16

/2
00

5.
7

A
6−

00
16

/2
00

5.
8

A
6−

00
16

/2
00

5.
19

A
6−

00
16

/2
00

5.
23

A
6−

00
16

/2
00

5.
10

A
6−

00
16

/2
00

5.
21

A
6−

00
16

/2
00

5.
9

A
6−

00
16

/2
00

5.
24

A
6−

00
16

/2
00

5.
11

A
6−

00
16

/2
00

5.
20

A
6−

00
38

/2
00

5.
3

A
6−

00
38

/2
00

5.
9

A
6−

00
38

/2
00

5.
5

A
6−

00
38

/2
00

5.
8

A
6−

00
61

/2
00

5.
6

A
6−

00
38

/2
00

5.
10

A
6−

00
38

/2
00

5.
7

A
6−

00
38

/2
00

5.
11

A
6−

01
18

/2
00

5.
3

A
6−

01
31

/2
00

5.
15

A
6−

01
31

/2
00

5.
18

A
6−

01
31

/2
00

5.
13

A
6−

01
31

/2
00

5.
20

A
6−

01
31

/2
00

5.
8

A
6−

01
31

/2
00

5.
10

A
6−

01
31

/2
00

5.
5

A
6−

01
31

/2
00

5.
19

A
6−

01
31

/2
00

5.
17

A
6−

01
31

/2
00

5.
9

A
6−

01
31

/2
00

5.
11

A
6−

02
67

/2
00

5.
3

A
6−

02
67

/2
00

5.
20

A
6−

02
63

/2
00

5.
2

A
6−

02
63

/2
00

5.
3

A
6−

03
10

/2
00

5.
2

A
6−

03
10

/2
00

5.
4

A
6−

01
24

/2
00

5.
3

A
6−

01
24

/2
00

5.
6

A
6−

01
24

/2
00

5.
7

A
6−

01
24

/2
00

5.
10

A
6−

01
04

/2
00

5.
3

A
6−

01
91

/2
00

5.
2

A
6−

01
91

/2
00

5.
3

A
6−

01
08

/2
00

5.
9

A
6−

01
08

/2
00

5.
11

A
6−

02
61

/2
00

5.
2

A
6−

02
61

/2
00

5.
3

A
6−

00
27

/2
00

4.
3

A
6−

01
34

/2
00

5.
3

A
6−

01
34

/2
00

5.
2

A
6−

02
83

/2
00

5.
3

A
6−

01
31

/2
00

5.
4

A
6−

02
12

/2
00

5.
6

A
6−

02
12

/2
00

5.
11

A
6−

01
34

/2
00

5.
7

A
6−

02
83

/2
00

5.
12

A
6−

01
34

/2
00

5.
4

A
6−

01
34

/2
00

5.
6

A
6−

00
99

/2
00

5.
4

A
6−

00
99

/2
00

5.
9

A
6−

01
34

/2
00

5.
5

A
6−

01
34

/2
00

5.
10

A
6−

01
34

/2
00

5.
11

A
6−

02
47

/2
00

5.
3

A
6−

02
47

/2
00

5.
2

A
6−

02
47

/2
00

5.
6

A
6−

02
47

/2
00

5.
5

A
6−

02
47

/2
00

5.
27

A
6−

02
47

/2
00

5.
7

A
6−

02
47

/2
00

5.
20

A
6−

02
47

/2
00

5.
12

A
6−

02
47

/2
00

5.
17

A
6−

02
47

/2
00

5.
19

A
6−

02
47

/2
00

5.
13

A
6−

02
47

/2
00

5.
4

A
6−

02
47

/2
00

5.
9

A
6−

02
47

/2
00

5.
26

A
6−

01
28

/2
00

5.
3

A
6−

01
28

/2
00

5.
18

A
6−

01
28

/2
00

5.
2

A
6−

01
28

/2
00

5.
17

A
6−

01
28

/2
00

5.
4

A
6−

01
28

/2
00

5.
7

0
50

10
0

15
0

Cluster Dendrogram

hclust (*, "complete")
dist.tok

H
ei

gh
t

In the preceding chunk of code we use RSNL’s documentTokenMarix() method to extract
an matrix of weighted—using the weightTfIdf method provided by tm—document-word fre-
quencies (rows are documents while columns represent tokens) and invoke the dist() function
in the stats package to generate a distance matrix suitable for hierarchical clustering methods.
documentTokenMatrix() returns a DocumentTermMatrix object as defined by the tm package.

2.3.2 Document Filters

The graph we just generated is, for lack of a better word, ugly. But we can take advantage of
the hierarchical nature of the dataset, and the meta-data encoded in our RSNLCorpus object, to
generate a more readable plot. So far we’ve restricted our transforms and filters to operations on
individual tokens but we can also filter out particular documents from a CorpusView using RSNL’s
filterDocuments() method.13 For example, the 475 speeches in our dataset come from a smaller
set of debates on particular pieces of legislation. During the debate, the rapporteur—the member
of the European Parliament responsible for guiding the legislation through parliament—almost
always gives a short informational speech describing the bill. We can take advantage of the meta-
data attached to our corpus to identify the rapporteur speeches in the dataset. Furthermore, we
can use this information to generate a filtered view of the data and try our simple visualization

13See tm’s tmFilter() method for an analogous function that directly modifies the corpus.

16

technique again, using only the rapporteurs’ speeches, in hopes of generating a representation of
the data that can tell us something about the similarity of the topics under debate.

> rap <- sapply(debates, meta, tag="ISRAPPORTEUR")

> debates.rap <- filterDocuments(debates.tok,

+ FunctionalDocumentFilter(function(x) rap == 1))

> dist.rap <- dist(documentTokenMatrix(debates.rap, weightTfIdf))

> clust.rap <- hclust(dist.rap)

> plot(clust.rap)

A
6−

00
61

/2
00

5.
3

A
6−

02
69

/2
00

5.
3

A
6−

00
33

/2
00

4.
3

A
6−

02
44

/2
00

5.
3

A
6−

02
47

/2
00

5.
3

A
6−

01
28

/2
00

5.
3

A
6−

01
34

/2
00

5.
3

A
6−

00
99

/2
00

5.
3

A
6−

00
16

/2
00

5.
3

A
6−

00
53

/2
00

5.
3

A
6−

00
53

/2
00

5.
4

A
6−

01
32

/2
00

5.
3

A
6−

02
61

/2
00

5.
3

A
6−

00
27

/2
00

4.
3

A
6−

01
24

/2
00

5.
3

A
6−

01
04

/2
00

5.
3

A
6−

01
91

/2
00

5.
3

A
6−

01
37

/2
00

5.
3

A
6−

01
30

/2
00

5.
3

A
6−

00
38

/2
00

5.
3

A
6−

01
46

/2
00

5.
3

A
6−

03
10

/2
00

5.
4

A
6−

01
08

/2
00

5.
3

A
6−

01
31

/2
00

5.
3

A
6−

02
12

/2
00

5.
3

A
6−

02
83

/2
00

5.
3

A
6−

01
99

/2
00

5.
3

A
6−

02
63

/2
00

5.
3

A
6−

00
53

/2
00

5.
5

A
6−

01
46

/2
00

5.
9

A
6−

01
31

/2
00

5.
22

A
6−

01
18

/2
00

5.
3

A
6−

02
67

/2
00

5.
3

0
50

10
0

15
0

Cluster Dendrogram

hclust (*, "complete")
dist.rap

H
ei

gh
t

Additionally, we might also try visualizing the rapporteur’s speeches from a bigram-based per-
spective:

> debates.rap.bigram <- filterDocuments(debates.bigram,

+ FunctionalDocumentFilter(function(x) rap == 1))

> dist.rap.bigram <- dist(documentTokenMatrix(debates.rap.bigram, weightTfIdf))

> clust.rap.bigram <- hclust(dist.rap.bigram)

> plot(clust.rap.bigram)

17

A
6−

02
47

/2
00

5.
3

A
6−

01
37

/2
00

5.
3

A
6−

01
24

/2
00

5.
3

A
6−

00
61

/2
00

5.
3

A
6−

01
04

/2
00

5.
3

A
6−

02
69

/2
00

5.
3

A
6−

01
18

/2
00

5.
3

A
6−

01
28

/2
00

5.
3

A
6−

01
31

/2
00

5.
3

A
6−

01
34

/2
00

5.
3

A
6−

00
99

/2
00

5.
3

A
6−

00
27

/2
00

4.
3

A
6−

01
32

/2
00

5.
3

A
6−

02
61

/2
00

5.
3

A
6−

00
33

/2
00

4.
3

A
6−

00
38

/2
00

5.
3

A
6−

00
16

/2
00

5.
3

A
6−

01
30

/2
00

5.
3

A
6−

00
53

/2
00

5.
3

A
6−

00
53

/2
00

5.
4

A
6−

02
12

/2
00

5.
3

A
6−

02
83

/2
00

5.
3

A
6−

01
08

/2
00

5.
3

A
6−

03
10

/2
00

5.
4

A
6−

01
99

/2
00

5.
3

A
6−

02
67

/2
00

5.
3

A
6−

02
63

/2
00

5.
3

A
6−

02
44

/2
00

5.
3

A
6−

01
46

/2
00

5.
3

A
6−

01
91

/2
00

5.
3

A
6−

01
31

/2
00

5.
22

A
6−

00
53

/2
00

5.
5

A
6−

01
46

/2
00

5.
9

0
10

20
30

40
50

60
70

Cluster Dendrogram

hclust (*, "complete")
dist.rap.bigram

H
ei

gh
t

2.4 Tagging and Tagged Views

So far we have dealt with simple tokenized representations of documents and corpora. RSNL
also provides tools for annotating tokenized text with labels, or tags. Tags provide information
about individual tokens in a view; one can use tags to annotate tokens with part-of-speech in-
formation, entity type (e.g. person, place, or thing), or any other piece of information the user
might have about individual tokens. Tags allow users to incorporate semantic information into
their analyses and otherwise enhance the raw text with pertinent token-level metadata. In this
section we demonstrate how RSNL represents text collections in terms of sequences of tagged to-
kens, using TaggedView objects. The TaggedView types extend the TokenizedView classes; thus
a TaggedCorpusView is a type of TokenizedCorpusView and a TaggedDocumentView is a sort
ofTokenizedCorpusView. Therefore, the methods we provide to interrogate tokenized views—such
as documentTokenMatrix(), freq(), freqTable(), has(), and unique()—all operate on tagged
views, although the output of these methods may differ across types. Furthermore, tagged views
provide a number of new methods that allow the user to effectively take advantage of the token
label information represented by these views.

Because taggers often take advantage of case to do their work, we’ll copy over our all lowercase
debates object before proceeding.

> debates <- RSNLCorpus(tm.debates)

18

2.4.1 Applying a Tagger

Tagging is similar to tokenization in practice and RSNL provides a method, tag() that can generate
tagged tokens from a variety of data types. Tags are applied to tokens and RSNL’s taggers are
designed to apply tags to objects representing token vectors. Given a character object, tag() will
treat the object as a vector of tags if it contains more than one element; on the other hand, if the
input contains only one element (or is a TextDocument object), tag() will treat the input as raw
text and apply a tokenizer to it before tagging:

> tag(debates[[1]]) # Uses the default MaxentTagger and PTBTokenizer

[1] "The/DT" "next/JJ"
[3] "item/NN" "is/VBZ"
[5] "the/DT" "report/NN"
[7] "-LRB-/-LRB-" "A6-0027/NNP"
[9] "\\//VBD" "2004/CD"
[11] "-RRB-/-RRB-" "by/IN"
[13] "Mrs/NNP" "Corbey/NNP"
[15] "on/IN" "the/DT"
[17] "draft/NN" "European/JJ"
[19] "Parliament/NNP" "and/CC"
[21] "Council/NNP" "Directive/NNP"
[23] "amending/VBG" "Directive/NNP"
[25] "94\\/62\\/EC/NNP" "on/IN"
[27] "packaging/NN" "and/CC"
[29] "packaging/VBG" "waste/NN"
[31] "./."

> tag(c("George Washington lived at Mount Vernon."),

+ tokenizer=RegexTokenizer("\\s+", FALSE))

[1] "George/NNP" "Washington/NNP" "lived/VBD"
[4] "at/IN" "Mount/NNP" "Vernon./NNP"

> tag(c("George Washington lived at Mount Vernon."), MaxentTagger("english"))

[1] "George/NNP" "Washington/NNP" "lived/VBD"
[4] "at/IN" "Mount/NNP" "Vernon/NNP"
[7] "./."

> tag(c("George", "Washington", "lived", "at", "Mount", "Vernon", "."),

+ NamedEntityTagger())

[1] "George/PERSON" "Washington/PERSON"
[3] "lived/O" "at/O"
[5] "Mount/LOCATION" "Vernon/LOCATION"
[7] "./O"

The preceding code segment demonstrates the two types of taggers that currently ship with RSNL.
The first is a Maximum Entropy based part-of-speech (POS) tagger developed by the Stanford

19

Natural Language Processing Group, providing pre-trained models for Arabic, Chinese, English,
and German text [6]. The English tagger uses tag codes from the Penn Treebank. The appendix to
this document contains a list of tags and corresponding parts of speech; Penn’s tagging conventions
are described in detail in the Treebank’s part-of-speech tagging guide [4].

MaxentTaggers are designed to operate on text that is tokenized according to Penn Treebank
conventions and thus should generally always be fed token vectors and views generated with a
PTBTokenizer. Nonetheless, it is possible to specify a custom tokenizer when invoking tag(), as
the second line of the above example shows. The second type of tagger is a Named Entity Recognizer
(NER), also developed by the Stanford NLP Group [2], which assigns PERSON, LOCATION, and
ORGANIZATION labels to English text.

When applied to a character vector tag() returns a vector of type Tagged. Tagged is a simple
extension of the base character type that associates tags with tokens. When printed to the screen
Tagged elements are displayed in token/tag format, but, internally, operations on Tagged objects
only see tokens unless they request tags explicitly. One can extract tags with label() and convert
a Tagged object to a character vector of the form token/tag with the flatten() method:

> (tagged <- tag(c("George Washington lived at Mount Vernon.")))

[1] "George/NNP" "Washington/NNP" "lived/VBD"
[4] "at/IN" "Mount/NNP" "Vernon/NNP"
[7] "./."

> label(tagged)

[1] "NNP" "NNP" "VBD" "IN" "NNP" "NNP" "."

> flatten(tagged)

[1] "George/NNP" "Washington/NNP" "lived/VBD"
[4] "at/IN" "Mount/NNP" "Vernon/NNP"
[7] "./."

Of course, one can also tag a RSNLCorpus, yielding a view of the corpus, or generate a tagged view
of a single document:

> (debates.pos <- tag(debates))

A tagged corpus view with 179959 total tagged tokens,
10489 unique tagged tokens, 9265 unique tokens, and 43 unique tags

> (debates.pos.1 <- tag(debates, index=1))

A tagged document view of A6-0027/2004.1 with 31 total tagged tokens,
27 unique tagged tokens, 26 unique tokens, and 13 unique tags

It is also possible to generate a tagged view from a tokenized view, inheriting the view’s transforms
and filters14 in the process:

> debates.tok <- stem(tokenize(debates))

> tag(debates.tok)

A tagged corpus view with 179959 total tagged tokens,
10220 unique tagged tokens, 6194 unique tokens, and 43 unique tags

14As long as they are tag-safe. See Section 2.4.3 for details.

20

2.4.2 Working with Tagged Views

As with TokenizedView object, we can examine out TaggedViews with a variety of methods. First
of all, we can examine the tokens in a document just as we would in a standard TokenizedView,
except now the method returns an object of type Tagged:

> tokens(debates.pos[[1]])

[1] "The/DT" "next/JJ"
[3] "item/NN" "is/VBZ"
[5] "the/DT" "report/NN"
[7] "-LRB-/-LRB-" "A6-0027/NNP"
[9] "\\//VBD" "2004/CD"
[11] "-RRB-/-RRB-" "by/IN"
[13] "Mrs/NNP" "Corbey/NNP"
[15] "on/IN" "the/DT"
[17] "draft/NN" "European/JJ"
[19] "Parliament/NNP" "and/CC"
[21] "Council/NNP" "Directive/NNP"
[23] "amending/VBG" "Directive/NNP"
[25] "94\\/62\\/EC/NNP" "on/IN"
[27] "packaging/NN" "and/CC"
[29] "packaging/VBG" "waste/NN"
[31] "./."

> tokens(debates.pos.1)

[1] "The/DT" "next/JJ"
[3] "item/NN" "is/VBZ"
[5] "the/DT" "report/NN"
[7] "-LRB-/-LRB-" "A6-0027/NNP"
[9] "\\//VBD" "2004/CD"
[11] "-RRB-/-RRB-" "by/IN"
[13] "Mrs/NNP" "Corbey/NNP"
[15] "on/IN" "the/DT"
[17] "draft/NN" "European/JJ"
[19] "Parliament/NNP" "and/CC"
[21] "Council/NNP" "Directive/NNP"
[23] "amending/VBG" "Directive/NNP"
[25] "94\\/62\\/EC/NNP" "on/IN"
[27] "packaging/NN" "and/CC"
[29] "packaging/VBG" "waste/NN"
[31] "./."

We can also take a look at the most common words in the corpus, although freqTable() now
returns tagged-token frequencies by default. Nonetheless, we can use the optional what argument
to see both tag and token frequencies:

> sort(freqTable(debates.pos), dec=T)[1:20]

21

the/DT ,/, ./. of/IN to/TO and/CC
10727 9467 6253 5710 5489 4823
in/IN is/VBZ a/DT for/IN that/IN I/PRP
3255 2832 2752 2383 2254 1871
on/IN be/VB this/DT we/PRP it/PRP are/VBP
1658 1603 1573 1374 1195 1188

not/RB will/MD
1157 988

> sort(freqTable(debates.pos, what="Tokens"), dec=T)[1:20]

the , . of to and in that is
10727 9467 6253 5710 5489 4823 3261 3045 2832

a for I on be this we it are
2752 2383 1871 1665 1603 1573 1374 1195 1188
not have
1157 1121

> sort(freqTable(debates.pos, what="Tags"), dec=T)[1:20]

NN IN DT JJ NNS , NNP VB RB
23689 22584 19178 12589 10248 9467 8757 7809 7804
PRP . CC TO VBZ VBP VBN MD VBG
6860 6386 5756 5515 4934 4458 4408 3501 2854
CD PRP$

2607 1701

Similarly, we can generate lists of unique tagged tokens, tokens, and tags

> u.tagtok <- unique(debates.pos)

> u.tok <- unique(debates.pos, what="Tokens")

> (u.tag <- unique(debates.pos, what="Tags"))

[1] "DT" "JJ" "NN" "VBZ" "-LRB-" "NNP"
[7] "VBD" "CD" "-RRB-" "IN" "CC" "VBG"
[13] "." "," "NNS" "VBN" "NNPS" "TO"
[19] ":" "PRP$" "VB" "RB" "MD" "JJR"
[25] "RBR" "RP" "PRP" "VBP" "WDT" "WRB"
[31] "JJS" "POS" "RBS" "EX" "WP" "PDT"
[37] "``" "''" "WP$" "FW" "UH" "LS"
[43] "SYM"

or generate document-token/tag/tagged-token matrices:

> documentTokenMatrix(debates.pos)

A document-term matrix (475 documents, 9265 terms)

Non-/sparse entries: 86652/4314223
Sparsity : 98%
Maximal term length: 26
Weighting : term frequency (tf)

22

> documentTagMatrix(debates.pos)

A document-term matrix (475 documents, 43 terms)

Non-/sparse entries: 12493/7932
Sparsity : 39%
Maximal term length: 5
Weighting : term frequency (tf)

> documentTaggedTokenMatrix(debates.pos)

A document-term matrix (475 documents, 10489 terms)

Non-/sparse entries: 88542/4893733
Sparsity : 98%
Maximal term length: 29
Weighting : term frequency (tf)

2.4.3 Transforming and Filtering Tagged Views

One can apply transforms and filters to tagged views, just as one may with tokenized views. Indeed,
because a tagged view is a type of tokenized view, one can apply a large variety of of token transforms
and filters directly to tagged views. For example, we can remove stopwords from a tagged view just
as we might from a tokenized view:

> (debates.pos <- filterTokens(debates.pos, StopFilter()))

A tagged corpus view with 83312 total tagged tokens,
9743 unique tagged tokens, 8696 unique tokens, and 33 unique tags

Furthermore, when one generates a tagged view from a tokenized view, the tagged view inherits
the former’s transforms:

> debates.tok <- tokenize(debates)

> debates.tok <- transformTokens(debates.tok,

+ RegexTokenTransform("^[0-9]+$", "NUMBER"))

> debates.tok <- filterDocuments(debates.tok, # 20% sample

+ FunctionalDocumentFilter(function(x) runif(length(x)) < .8))

> (debates.pos <- tag(debates.tok))

A tagged corpus view with 146457 total tagged tokens,
9357 unique tagged tokens, 8279 unique tokens, and 42 unique tags

RSNL also provides tools that make tag-based filtering especially convenient. For example, we can
restrict a view to noun forms as follows:

> filterTokens(debates.pos, RegexTagFilter("^NN"))

A tagged corpus view with 35967 total tagged tokens,
4207 unique tagged tokens, 4138 unique tokens, and 4 unique tags

23

Along a similar vein, we can use the NER tagger to extend our cluster analysis from the previous
section. This time we’ll cluster debates purely in terms of organizations mentioned, collapsing word
counts across speeches in the same debate:

> # Tag and filter

> debates.ner <- tag(debates, NamedEntityTagger())

> debates.ner <- filterTokens(debates.ner,

+ FunctionalTagFilter(function (x) x == "ORGANIZATION"))

> # Create a debate-token matrix

> docTM <- as.matrix(documentTokenMatrix(debates.ner))

> codes <- sapply(debates, meta, tag="CODE")

> ucodes <- unique(codes)

> debateTM <- t(sapply(ucodes,

+ function (ucode) apply(docTM[codes==ucode,], 2, sum)))

> # Calculate distances and plot

> dist.ner <- dist(debateTM)

> clust.ner <- hclust(dist.ner)

> plot(clust.ner)

A
6−

00
61

/2
00

5
A

6−
01

31
/2

00
5

A
6−

01
46

/2
00

5
A

6−
01

37
/2

00
5

A
6−

02
63

/2
00

5
A

6−
01

91
/2

00
5

A
6−

01
24

/2
00

5
A

6−
01

04
/2

00
5

A
6−

01
18

/2
00

5
A

6−
00

33
/2

00
4

A
6−

01
32

/2
00

5
A

6−
01

08
/2

00
5

A
6−

02
61

/2
00

5
A

6−
00

53
/2

00
5

A
6−

01
30

/2
00

5
A

6−
00

99
/2

00
5

A
6−

00
38

/2
00

5
A

6−
00

27
/2

00
4

A
6−

02
44

/2
00

5
A

6−
01

99
/2

00
5

A
6−

01
34

/2
00

5
A

6−
02

67
/2

00
5

A
6−

01
28

/2
00

5
A

6−
02

47
/2

00
5

A
6−

02
69

/2
00

5
A

6−
00

16
/2

00
5

A
6−

02
83

/2
00

5
A

6−
02

12
/2

00
5

A
6−

03
10

/2
00

5

0
10

20
30

40
50

60

Cluster Dendrogram

hclust (*, "complete")
dist.ner

H
ei

gh
t

It is important to realize that one does face some limitations when applying token transforms
to tagged views. First of all, it is important to note that RSNL tokenizes and tags text prior

24

to applying token filters and transforms when constructing tagged views. This is generally the
behavior that the user wants—both the POS and NER taggers are designed to operate on raw
text and may perform poorly on transformed, and especially filtered, input—but it is important
to keep in mind that transforms and filters are post-tag operations, even for tagged views that are
constructed from filtered and transformed tokenized views. Furthermore, while all document and
token filters are safe for use with tagged views the same does not hold true for token transforms more
generally. The TokenTransform interface requires only that a transform provide a specialization of
the transformTokens method that takes a character vector as its first argument and returns a
transformed character vector. Therefore, arbitrary transforms may discard tag information when
dealing with the contents of tagged views. To be tag-safe a transform must return an object of type
Tagged when a Tagged vector is passed as the first argument to transformTokens. For example,
we can build a tag-safe transform for converting tokens to upper case like so:

> ucTransform <- FunctionalTokenTransform(

+ function (x)

+ if (is(x, "Tagged"))

+ Tagged(toupper(x), label(x))

+ else

+ toupper(x), tagSafe=TRUE)

> sort(freqTable(transformTokens(debates.pos, ucTransform)), dec=T)[1:20]

THE/DT ,/, ./. OF/IN TO/TO
9582 7864 5171 4666 4574

AND/CC IN/IN IS/VBZ A/DT FOR/IN
4023 2946 2318 2299 2036

THAT/IN THIS/DT I/PRP NUMBER/CD WE/PRP
1861 1576 1545 1541 1434
ON/IN BE/VB IT/PRP ARE/VBP NOT/RB
1420 1323 1308 963 940

Note that we indicate that ucTransform is a tag-safe object by passing the argument tagSafe=TRUE
to the FunctionalTokenTransform constructor. This causes the constructor to generate a type
of FunctionalTokenTransform object that extends the TagSafe class, indicating that it pro-
vides a tag-safe interface.15 Furthermore, most of RSNL’s pre-built transform types—including
RegexTokenTransform, SnowballStemmer, and TolowerTokenTransform—are tag-safe and imple-
ment the TagSafe interface.

15Note that passing tagSafe=TRUE to the constructor does not guarantee tag-safety, but rather provides an indicator
that the transform conforms to the TagSafe interface; that is, that it provides a specialization of transformTokens

that returns an object of type Tagged when a Tagged vector is provided as its first argument. Other code may test
transforms for tag-safety prior to applying them by seeing if they extend the TagSafe class.

25

3 Appendix: Penn Treebank Part of Speech Codes

CC Coordinating conjunction
CD Cardinal number
DT Determiner
EX Existential there
FW Foreign word
IN Preposition or subordinating conjunction
JJ Adjective
JJR Adjective, comparative
JJS Adjective, superlative
LS List item marker
MD Modal
NN Noun, singular or mass
NNS Noun, plural
NNP Proper noun, singular
NNPS Proper noun, plural
PDT Predeterminer
POS Possessive ending
PRP Personal pronoun
PRP$ Possessive pronoun
RB Adverb
RBR Adverb, comparative
RBS Adverb, superlative
RP Particle
SYM Symbol
TO to
UH Interjection
VB Verb, base form
VBD Verb, past tense
VBG Verb, gerund or present participle
VBN Verb, past participle
VBZ Verb, 3rd person singular present
WDT Wh-determiner
WP Wh-pronoun
WP$ Possessive wh-pronoun
WRB Wh-adverb

References

[1] Ingo Feinerer, Kurt Hornik, David Meyer. 2008. “Text Mining Infrastructure in R.” Journal of
Statistical Software 25 (5).

[2] Jenny Rose Finkel, Trond Grenager, and Christopher Manning. 2005. “Incorporating Non-local
Information into Information Extraction Systems by Gibbs Sampling.” Proceedings of the 43nd
Annual Meeting of the Association for Computational Linguistics (ACL 2005), pp. 363-370.
http://nlp.stanford.edu/ manning/papers/gibbscrf3.pdf

26

[3] Daniel Pemstein. 2009. “Predicting Roll Calls with Legislative Text.” Presented at The 67th
Annual National Conference of the Midwest Political Science Association.

[4] Beatrice Santorini. 1990.“Part-of-Speech Tagging Guidelines for the Penn Treebank Project (3rd
Revision, 2nd Printing)” ftp://ftp.cis.upenn.edu/pub/treebank/doc/tagguide.ps.gz.

[5] Duncan Temple Lang. 2008.“XML: Tools for parsing and generating XML within R and S-Plus.”
http://cran.r-project.org/web/packages/XML/index.html.

[6] Kristina Toutanova and Christopher D. Manning. 2000. “Enriching the Knowledge Sources
Used in a Maximum Entropy Part-of-Speech Tagger.” In Proceedings of the Joint SIGDAT
Conference on Empirical Methods in Natural Language Processing and Very Large Corpora
(EMNLP/VLC-2000), pp. 63-70.

27

