
ReadMe: Software for Automated Content Analysis1

Daniel Hopkins2 Gary King3 Matthew Knowles4 Steven Melendez5

Version 0.991
September 19, 2008

1Available from http://GKing.Harvard.Edu/readme under the Creative Commons Attribution-
Noncommercial-No Derivative Works 3.0 License, for academic use only

2Institute for Quantitative Social Science, 1737 Cambridge Street, Harvard University, Cambridge MA
02138; www.danhopkins.org,dhopkins -at- fas.harvard.edu

3Institute for Quantitative Social Science, 1737 Cambridge Street, Harvard University, Cambridge MA
02138; http://GKing.Harvard.Edu, King -at- Harvard.Edu, (617) 495-2027.

4Institute for Quantitative Social Science, 1737 Cambridge Street, Harvard University, Cambridge MA
02138; MKnowles -at- Fas.Harvard.Edu, (617) 384-5747.

5Institute for Quantitative Social Science, 1737 Cambridge Street, Harvard University, Cambridge MA
02138; melend -at- Fas.Harvard.Edu, (617) 384-5747.

Contents

1 Introduction 1

2 Installation 2
2.1 Python (Required) . 2
2.2 Windows . 2
2.3 Linux/Unix . 2
2.4 Updating VA . 3

3 Examples 3
3.1 Estimating Blogger Sentiment Toward Senator Hillary Clinton 3

4 R Function Reference 4
4.1 Function undergrad() . 4

4.1.1 Usage . 4
4.1.2 Inputs . 4
4.1.3 Value . 5
4.1.4 Details . 5

4.2 Function preprocess . 6
4.2.1 Usage . 6
4.2.2 Inputs . 6
4.2.3 Value . 6

4.3 Function readme() . 6
4.3.1 Usage . 6
4.3.2 Inputs . 7
4.3.3 Value . 7

4.4 Examples . 7

5 Hand-Coding Procedures 8
5.1 Define Objectives . 8
5.2 Develop the Corpus . 8
5.3 Develop Coding Procedures . 8
5.4 Coder Training and Evaluation . 9
5.5 Assembling and Reporting Results . 9

1 Introduction

The ReadMe software package for R takes as input a set of text documents (such as speeches, blog
posts, newspaper articles, judicial opinions, movie reviews, etc.), a categorization scheme chosen
by the user (e.g., ordered positive to negative sentiment ratings, unordered policy topics, or any
other mutually exclusive and exhaustive set of categories), and a small subset of text documents
hand classified into the given categories. The hand classified subset need not be a random sample
and can differ in dramatic but specific ways from the population of documents. If used properly,
ReadMe will report, normally within sampling error of the truth, the proportion of documents
within each of the given categories among those not hand coded.

ReadMe computes the proportion of documents in each category without the more error-prone
intermediate step of classifing individual documents. This is an important limitation for some
purposes, but not for most social science applications. For example, we have been unable to
locate many published examples of content analysis in political science where the ultimate goal
was individual-level classification rather than the generalizations provided by the proportion of
documents within each category, or perhaps the proportion within each category in subsets of the
documents (such as policy areas or years). It appears that a similar point also applies to the most
social sciences and related academic areas. Thus, for example, our method cannot be used to
classify letters to a legislative representative by policy area, but it could accurately estimate the
distribution of letters by policy areas — which makes the method useless in helping the legislator

1

route letters to the most informed employee to draft a response, but useful for a political scientist
tracking the intensity of this form of constituency expression by policy.

The specific procedures implemented in ReadMe are described in

Daniel Hopkins and Gary King. 2007. “Extracting Systematic Social Science Meaning
from Text,” http://GKing.Harvard.edu/.

2 Installation

ReadMe requires R version 2.5.0 or later, available for free from http://cran.r-project.org/.
Installation differs slightly by operating system.

2.1 Python (Required)

ReadMe requires an interpreter for the Python programming language. Python is free and open-
source software and is available for Windows, Mac OS X, Linux and many other common platforms.

If Python is not installed on your computer, you can download source or executable packages for
free at http://www.python.org/download/. Standard installations for Windows, Mac or Linux
should require no further configuration for use with ReadMe.

If you receive a message indicating that Python is not on your system path, please make sure
the interpreter is installed and that the directory in which it is installed is on your system path. If
Python is installed with the default options on Windows, it is unnecessary to set your system path.
Default installations for other operating systems normally place Python in a directory already on
your system path. Please see the excellent documentation on the Python site for more information
about installing and running the Python interpreter.

The system path is a list of directories in which the operating system will search for a given
program when you type its name. In both Windows and Unix, it is defined in an environment
variable generally called PATH. In Unix, the path is specified in the appropriate configuration file
for your login shell. In recent versions of Windows, change your system path by right clicking
on the “My Computer” icon on your desktop, clicking properties, clicking the “Advanced” tab
and, within “Advanced,” clicking the Environment Variables button. Find the path variable and
click “edit.” Notice that the path is a list of directories, separated by a semicolon. Add or delete
directories as appropriate while adhering to this format.

If you do not wish to change your system path for any reason, you can specify the full path of
the python binary using the pyexe argument to the undergrad function.

ReadMe has been tested with Python versions 2.3, 2.4 and 2.5 and should work with earlier
versions as well. If you are running an earlier version of Python and experience any difficulty with
the Python portion of the program, please upgrade to a more recent version.

2.2 Windows

Launch R and then at the R command prompt, type either:

> install.packages("ReadMe", repos = "http://gking.harvard.edu")

to install from Gary King’s website or

> install.packages("ReadMe")

to install from the CRAN respository set. Alternatively, you may download the Windows bundle
from http://GKing.Harvard.Edu/bin/windows/contrib and use the R pull-down menu com-
mands for installing a package from a zip file.

2.3 Linux/Unix

You initially need to create both local R and local R library directories if they do not already exist.
At the Unix command prompt in your home directory, do this by typing:

2

http://GKing.Harvard.edu/
http://GKing.Harvard.edu/
http://GKing.Harvard.edu/
http://cran.r-project.org/
http://www.python.org/download/
http://GKing.Harvard.Edu/bin/windows/contrib

> mkdir ~/.R ~/.R/library

Then open the ‘.Renviron’ file that resides in your home directory, creating it if necessary, and
adding the line:

R_LIBS = "~/.R/library"

using your preferred text editor (e.g. pico, VI, Emacs, etc.). These steps only need to be performed
once. After starting R, install ReadMe by typing at the R command prompt, either:

> install.packages("ReadMe", repos = "http://gking.harvard.edu")

to install using Gary King’s website or

> install.packages("ReadMe")

to install from the CRAN repository set as part of your options. You can ignore warning messages.
Alternatively, you may download the Unix bundle ‘ReadMe XX.tar.gz’, available from http://
gking.harvard.edu/src/contrib/, and place it in your home directory. Note that ‘XX’ is the
current version number. Then, at the Unix command line from your home directory, type

> R CMD INSTALL ReadMe_XX.tar.gz

to install the package.

2.4 Updating VA

ReadMe also requires VA, which may need updating if previously installed:

update.packages("VA",repos="http://gking.harvard.edu",lib="~/.R/library")

If VA has not been previously installed, it will be installed automatically during the ReadMe instal-
lation.

3 Examples

3.1 Estimating Blogger Sentiment Toward Senator Hillary Clinton

This example uses a training set of size 500 to estimate sentiment toward Senator Hillary Rodham
Clinton in a test set of size 1438 blog posts.

A control file is given in comma-separated form, along with the 1938 posts comprising the
training and test sets. These can be found in demofiles/clintonposts within the package’s install
directory.

The demo executes the following R code:

oldwd <- getwd()
setwd(system.file("demofiles/clintonposts", package="ReadMe"))

undergrad.results <- undergrad(sep = ’,’)

undergrad.preprocess <- preprocess(undergrad.results)

readme.results <- readme(undergrad.preprocess)
setwd(oldwd)

3

http://gking.harvard.edu/src/contrib/
http://gking.harvard.edu/src/contrib/

The first two lines save the current working directory for the user’s convenience, then switch
the working directory to “demofiles/clintonposts” in the ReadMe directory.

The next line calls the “undergrad” function to process the texts based on the control file,
storing the data in undergrad.results; default parameters are used, except that we specify that the
control file is comma-separated with the “sep” argument.

Next, we use the “preprocess” function to remove columns with variance 0.
Finally, we store the results of the readme function in readme.results and restore the initial

working directory.
After the demo is complete, its results can be viewed in readme.results and the intermediate

data in undergrad.results and undergrad.preprocess.

4 R Function Reference

4.1 Function undergrad()

The data input function is called undergrad in honor of the undergraduates who commonly perform
this task in content analyses. It translates a set of texts stored in a single folder into a data set
where each text is represented by a row and each word is a column, with 1s indicating if that word
appears in the text.

4.1.1 Usage

undergrad(control ="control.txt", stem=T,strip.tags=T,ignore.case=T,
table.file="tablefile.txt",threshold=0.01,
pyexe=NULL, sep=NULL,printit=TRUE)

4.1.2 Inputs

control Specifies a control file to load in, specifying filenames and binary classifications for the
texts. The file should contain be three sep-separated (or whitespace-delimited, if sep is
NULL as in the default case) columns, one headed “filename” providing a list of filenames,
one headed “truth” providing the classifications for a subset and missing values (NA or “.”
for the others), and a third headed “trainingset” and having a 1 for each element of the
training set and a 0 for elements of the test set. When trainingset=1, truth should not
be missing or it will be deleted. The function will compute the distribution of documents
across categories for all documents with trainingset=0 (if truth is not missing for some
these observations, it will not be used during estimation but will be used for printing and
graphics on output to compare to the estimates). Defaults to “control.txt”.

Alternatively, one can provide a data frame in the same three-column format. This will be
written to readmetmpctrl.txt in the working directory during program operation.

stem Should the Porter stemmer be used to stem the individual words? Please note: the Porter
stemmer relies on case-insensitivity and will only function properly when ignore.case is set
to TRUE. See details at http://www.tartarus.org/~martin/PorterStemmer/. Defaults to
TRUE.

strip.tags Indicates whether or not HTML/XML/SGML “head,” tags and JavaScript should be
stripped from the input. Defaults to TRUE.

table.file Path of file in which table of word frequencies should be stored. Defaults to “table-
file.txt”. Of course, user must have read and write access to this file, and prior contents of
file will be overwritten.

threshold A floating-point number between 0 and 1. Only words occuring in more than threshold
(and less than 1-threshold) times the number of texts will be included as features. To in-
clude all words, set threshold to 0. Default = 0.01, which includes all words occuring in more
than 1% of texts.

4

http://www.tartarus.org/~martin/PorterStemmer/

pyexe Path to use for Python interpreter. If NULL, ReadMe will first search the system path
and then, if on Windows, default installation directories. If ReadMe is unable to locate your
Python interpreter or you wish to use a different interpreter than that which lies on your
system path set this variable. Defaults to NULL.

sep String variable indicating column separators in control file. Defaults to NULL, in which case
whitespace separates columns.

printit Boolean variable indicating whether or not progress of text processing module should be
output to screen. Defaults to TRUE.

fullfreq Boolean variable indicating whether data returned should be frequency data giving the
number of times a word occurs rather than the usual binary (word occurs or not). Defaults
to FALSE, meaning binary data are returned.

4.1.3 Value

A list containing the following elements, to be passed to the ReadMe function. To call ReadMe
with your own choice of values, edit this list or pass changes separately as arguments.

trainingset Binary table indicating which words, among those words that satisfy threshold,
appear in which text in the training set. Words appearing in all or none of the texts are
omitted regardless of threshold.

testset Same format as trainingset, but for test set of texts.

formula Formula to use in the call to function VA, where the main computation is done. Defaults
to include all words that statisfy threshold and appear less than 100% of the time as
dependent variables. “truth” from control file is the explanatory variable.

features Number of features to use in each subset in VA. Corresponds to nsymp in VA. Defaults
to 15. See VA or ReadMe function documentation for details.

n.subset Number of subsets to use in VA. Defaults to 300. See VA or ReadMe function docu-
mentation for details. Larger numbers produce more precision.

prob.wt Vector of probability weights for the features to be employed by VA. Must have length
equal to the number of features in the formula. Defaults to 1. See VA or ReadMe function
documentation for details.

boot.se Use bootstraping in VA to compute standard errors? Defaults to FALSE. Bootstrapping
produces standard errors but is time-intensive. See VA or ReadMe function documentation
for details.

nboot How many bootstrapping samples for VA? Defaults to 300. Ignored unless boot.se set to
TRUE. See VA or ReadMe function documentation for details.

printit Print progress of VA function? Defaults to TRUE. See VA or ReadMe function documen-
tation for details.

4.1.4 Details

When a text file is used as the control file, it should be a comma-delineated table in which each
line refers to a text to be included in the test set or training set. The first column, filename,
is the path to the text (either absolute or relative paths will work). The second column, truth,
defines the category of each text. The third column, trainingset, contains a binary value which
indicates whether the text should be included training set.

If the trainingset value is 0 or is omitted, ReadMe will treat the text as part of the test set.
Likewise, the truth value is typically omitted for texts in the test set. However, if a truth value
is included for a test set text, it will not be used during estimation but will be used for printing
and graphics on output to compare to ReadMe’s estimate of the distribution.

5

Note that there is no numerical significance to the values used in the truth column to identify
the categories; these values serve only as labels.

Consider the following example control file:

filename,truth,trainingset
/users/m/readme/example/file1.txt,1,1
/users/m/readme/example/file2.txt,2,1
/users/m/readme/example/file3.txt,2,1
/users/m/readme/example/file4.txt,3,1
/users/m/readme/example/file5.txt,,
/users/m/readme/example/file6.txt,,
/users/m/readme/example/file7.txt,,
/users/m/readme/example/file8.txt,,
/users/m/readme/example/file9.txt,,

ReadMe always disregards the first line of the control file, which can be used to label the
columns. In this example, ReadMe will use the text documents in file1.txt through file4.txt
as training texts, and will compute the distribution of across the categories 1,2,3 for the remaining
texts.

When working with large control files, it may be useful to build and manage the control file
in a spreadsheet program and then export the resulting file in the CSV comma-delineated format
(both Microsoft Excel and OpenOffice.org Calc support this feature). Likewise, on systems which
support a UNIX shell, the ls -1 command can be used to build a list of the texts in a given folder,
which can then be copy-and-pasted into a spreadsheet or directly into a text control file.

4.2 Function preprocess

This function takes the inputted data matrix from undergrad() and prepares it for analysis by
readme() by removing invariant columns.

4.2.1 Usage

preprocess(undergrad.results)

4.2.2 Inputs

undergrad.results The output from readme

4.2.3 Value

undergrad.preprocessed The preprocessed list with invariant columns from either data set (the
test or training set) removed

4.3 Function readme()

The main function in ReadMe is called readme. It computes the proportion of text documents
within each of the user-specified categories. It can also optionally computes bootstrap-based stan-
dard errors. readme requires the R function VA (by Gary King and Ying Lu), which after extensive
processing does the final computation.

4.3.1 Usage

readme(undergradlist = list (), trainingset = NULL,
testset = NULL, formula = NULL,
n.subset=NULL, prob.wt=NULL, boot.se=NULL,
nboot=NULL, printit=NULL)

6

4.3.2 Inputs

There are two ways to provide input to the readme function: as the list object as returned by
the undergrad function using the undergradlist parameter, or through the individual parameters
corresponding to the list elements. Any non-null parameter will override the corresponding list
element. If unmodified, the function will use the default parameters for VA.

undergradlist A list, as defined above, having an element for each parameter below. Specify
parameter values either through the list or through the individual arguments. Non-null
individual arguments will supersede list values.

features A positive integer specifying the number of words to be subset from all words for esti-
mation at each iteration. For the choice of features. Default=16. (This option is nsymp in
VA).

formula By default, the formula specifies all the possible features (see undergrad()). To modify
it, the new formula must be specified as

formula=cbind(WORD.the+WORD.formula)~TRUTH

n.subset A positive integer specifying the total number of draws of different subsets of features.
Default=300.

prob.wt A positive integer or a vector of weights that determines how likely a feature should
be when selecting subsets of features. When prob.wt is a vector, it must be a vector of
probabilities that sum up to 1 with length equal to the total number of features. When
prob.wt=1, binomial weights which are proportion to the inverse of variances of the each
reported binary feature variable. When prob.wt=0, all features will be selected with equal
probability. Default=1.

boot.se A Logical value. If TRUE, bootstrap standard errors of the CSMF are estimated. This
option typically takes a lot of computing time. The default is FALSE.

nboot A positive integer. If boot.se=TRUE, it specifies the number of bootstrapping samples
taken to estimate the standard errors of CSMF. The default is 300.

printit Logical value. If TRUE, the progress of the estimation procedure is printed on the screen.

4.3.3 Value

An object of class “VA”, a list containing the following elements:

est.CSMF The estimated proportion in each category

true.CSMF The observed proportion in each category whenever available.

est.se The bootstrap standard errors of est.CSMF when boot.se=TRUE.

true.CSMF.bootmean The bootstrap mean of the observed category proportions when they are
available and when boot.se=TRUE.

true.bootse The bootstrap standard errors of the observed category proportions when they are
available and when boot.se=TRUE.

4.4 Examples

oldwd <- getwd()
setwd(system.file("demofiles", package="ReadMe"))

###Load in word only if it appears in more than 20% of documents
output<-undergrad(threshold=.2)

7

###Modify number of subsets
results<-readme(undergradlist=output,n.subset=30)

###Modify Training Set
newtrainingset <- output$trainingset[1:7,]
results<-readme(undergradlist=output,traingset=newtrainingset,n.subset=30)
setwd(oldwd)

5 Hand-Coding Procedures

As with many methods, many of the most critical decisions in analyzing texts come prior to
using the computational and statistical procedures outlines above. Here, we provide step-by-step
guidelines on hand-coding which could improve the quality of the data available for analysis with
ReadMe.

5.1 Define Objectives

First, consider what information will be extracted from the coding results, and how this information
will address the research objectives. Define the unit of analysis and the quantity of interest for
the study. What will be your fundamental unit—documents, paragraphs, webpages, sentences,
etc.? Although ReadMe lets you choose among these, we recommend that you choose the unit that
makes the most substantive sense. For our work, the blog post was the relevant unit and sentences
within it relatively meaningless; other applications might lead to different choices.

5.2 Develop the Corpus

Define the scope of the corpus Identify any structural limitations (e.g., no texts under n
characters should be included, non-English texts should be excluded, etc). Consider whether the
entire corpus or merely a subset will be hand-coded. In the latter case, identify how the subset
should be selected (randomly, representatively, etc.)

Format the corpus In some cases it is necessary to remove information which should not be
distributed to the hand-coders, such as personal details and other such data. Likewise, some corpora
might contain tags or labels which would interfere with the coders making objective analyses of
the text.

5.3 Develop Coding Procedures

Codebook Compile a codebook which includes an overview of the project, its goals, and
methods. It should also include an outline of the coding task: how to identify relevant text,
select the appropriate dimension(s), score the text, and how to deal with ’tough cases’ and other
uncertainty. Ideally, all information the coders need should be in the codebook; in this way,
all coding rules can be made public and your study can be replicated without your personal
participation.

Coding Models

1. Categorical Classification: Either mutually exclusive coding where coders will select the single
best classification for the unit of analysis, or non-exclusive coding where coders will select all
categories relevant to the unit of analysis

2. Dimension / Affect Coding: Coders will score each unit of analysis on a relevant dimension
(scale). Scores are specific to the dimensions on which they are evaluated. Any numerical
value can be used to establish the affect scale, but it is essential to carefully define what each
discrete score represents. For example, on an affect scale {−2, −1, 0, 1, 2} coders should be

8

provided with specific examples of what constitutes a −1 as opposed to a −2 score, and so on.
Coders should be given a single dimension, a choice of dimensions, or multiple dimensions on
which to code each document. Each dimension should be a single, exhaustive scale containing
all relevant positions. Some examples of dimensions: “Economic liberalism / conservatism,”
“Leadership ability,” “Hawk/Dove,” etc. In single dimension coding, coders are only given
one dimension on which to code, so each unit of analysis will be coded on that dimension or
coded as irrelevant. In multiple dimension coding, coders are given a list of dimensions, and
code the unit of analysis on all relevant dimensions.

3. Develop coding infrastructure: Consider whether hand coding done with computer assistance
would be helpful, or whether keeping track in a spreadsheet or on paper is sufficient. Com-
mercial options include programs like Atlas.ti, Nud*ist, Xsight, or EZ-text. Some projects
develop their own computer programs for collecting coding data. The selection of a coding
interface can have a dramatic effect on the results. For example, see discussion in Kwon,
Shulman and Hovy (2006).

5.4 Coder Training and Evaluation

Training There are at least three important aspects to coder training: use of controlled, pre-
scored practice cases, periodic collaboration among coders as a means of calibrating their work and
identifying problems with the coding system, and periodic retraining of coders to ensure consistency
of their work over time.

Evaluation The coders work should be evaluated by analyzing inter-coder reliability rates.
Likewise, it is important to let coders know how they are doing; many coders see inter-coder data
as a competitive challenge to improve their work.

Feedback from Coders On the coding sheet or interface, provide the coders with an op-
portunity to note any additional issues specific to the text or the coding process. This can be a
valuable tool for identifying problems with the coding system.

5.5 Assembling and Reporting Results

One issue the coding system must address is how to deal with ties and disagreement among coders.
One option is to have any disputed codings re-coded by additional coders. However, this may
significantly increase the among of coder-hours required for a project. Alternatively, ties can be
broken at random. It is essential to report intercoder reliability statistics in a clear way, prior to
implementing these fixes. The Kappa statistic described in Kwon, Shulman and Hovy (2006) is
helpful, but may not be provide sufficient detail. Craggs and Wood (2005) offers an in-depth review
of various methods of reporting intercoder reliability; they suggest that “only chance-corrected
measures that assume a common distribution of labels for all coders are suitable for measuring
agreement in reliability studies” (Craggs and Wood, 2005). In our work, we find that the whole
inter-coder reliability matrix, without summary, is useful, since it provides specific feedback about
where the coding scheme can be improved.

References

Craggs, Richard and Mary McGee Wood. 2005. “Evaluating Discourse and Dialogue Coding
Schemes.” Computational Linguistics 31(3):289–295.

Hopkins, Daniel and Gary King. 2007. “Extracting Systematic Social Science Meaning from Text.”.
http://gking.harvard.edu/files/abs/words-abs.shtml.

Kwon, Namhee, Stuart W. Shulman and Eduard Hovy. 2006. “Collective Text Analysis for eRule-
making.” 7th Annual International Conference on Digital Government Research .

9

	Introduction
	Installation
	Python (Required)
	Windows
	Linux/Unix
	Updating VA

	Examples
	Estimating Blogger Sentiment Toward Senator Hillary Clinton

	R Function Reference
	Function undergrad()
	Usage
	Inputs
	Value
	Details

	Function preprocess
	Usage
	Inputs
	Value

	Function readme()
	Usage
	Inputs
	Value

	Examples

	Hand-Coding Procedures
	Define Objectives
	Develop the Corpus
	Develop Coding Procedures
	Coder Training and Evaluation
	Assembling and Reporting Results

