
1 probit.mixed: Mixed effects probit Regression

Use generalized multi-level linear regression if you have covariates that are
grouped according to one or more classification factors. The probit model is
appropriate when the dependent variable is dichotomous.

While generally called multi-level models in the social sciences, this class
of models is often referred to as mixed-effects models in the statistics litera-
ture and as hierarchical models in a Bayesian setting. This general class of
models consists of linear models that are expressed as a function of both fixed
effects, parameters corresponding to an entire population or certain repeatable
levels of experimental factors, and random effects, parameters corresponding to
individual experimental units drawn at random from a population.

1.0.1 Syntax

z.out <- zelig(formula= y ~ x1 + x2 + tag(z1 + z2 | g),
data=mydata, model="probit.mixed")

z.out <- zelig(formula= list(mu=y ~ xl + x2 + tag(z1, gamma | g),
gamma= ~ tag(w1 + w2 | g)), data=mydata, model="probit.mixed")

1.0.2 Inputs

zelig() takes the following arguments for mixed:

� formula: a two-sided linear formula object describing the systematic com-
ponent of the model, with the response on the left of a˜operator and the
fixed effects terms, separated by + operators, on the right. Any random
effects terms are included with the notation tag(z1 + ... + zn | g)
with z1 + ... + zn specifying the model for the random effects and g
the grouping structure. Random intercept terms are included with the
notation tag(1 | g).
Alternatively, formula may be a list where the first entry, mu, is a two-
sided linear formula object describing the systematic component of the
model, with the repsonse on the left of a˜operator and the fixed effects
terms, separated by + operators, on the right. Any random effects terms
are included with the notation tag(z1, gamma | g) with z1 specifying
the individual level model for the random effects, g the grouping structure
and gamma references the second equation in the list. The gamma equation
is one-sided linear formula object with the group level model for the ran-
dom effects on the right side of a˜operator. The model is specified with
the notation tag(w1 + ... + wn | g) with w1 + ... + wn specifying
the group level model and g the grouping structure.
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1.0.3 Additional Inputs

In addition, zelig() accepts the following additional arguments for model spec-
ification:

� data: An optional data frame containing the variables named in formula.
By default, the variables are taken from the environment from which
zelig() is called.

� na.action: A function that indicates what should happen when the data
contain NAs. The default action (na.fail) causes zelig() to print an
error message and terminate if there are any incomplete observations.

Additionally, users may with to refer to lmer in the package lme4 for more
information, including control parameters for the estimation algorithm and their
defaults.

1.0.4 Examples

1. Basic Example with First Differences

Attach sample data:

> data(voteincome)

Estimate model:

> z.out1 <- zelig(vote ~ education + age + female + tag(1 | state), data=voteincome, model="probit.mixed")

Summarize regression coefficients and estimated variance of random ef-
fects:

> summary(z.out1)

Set explanatory variables to their default values, with high (80th per-
centile) and low (20th percentile) values for education:

> x.high <- setx(z.out1, education=quantile(voteincome$education, 0.8))

> x.low <- setx(z.out1, education=quantile(voteincome$education, 0.2))

Generate first differences for the effect of high versus low education on
voting:

> s.out1 <- sim(z.out1, x=x.high, x1=x.low)

> summary(s.out1)
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1.0.5 Mixed effects probit Regression Model

Let Yij be the binary dependent variable, realized for observation j in group i
as yij which takes the value of either 0 or 1, for i = 1, . . . ,M , j = 1, . . . , ni.

� The stochastic component is described by a Bernoulli distribution with
mean vector πij .

Yij ∼ Bernoulli(yij |πij) = π
yij

ij (1− πij)1−yij

where
πij = Pr(Yij = 1)

� The q-dimensional vector of random effects, bi, is restricted to be mean
zero, and therefore is completely characterized by the variance covarance
matrix Ψ, a (q × q) symmetric positive semi-definite matrix.

bi ∼ Normal(0,Ψ)

� The systematic component is

πij ≡ Φ(Xijβ + Zijbi)

where Φ(µ) is the cumulative distribution function of the Normal distri-
bution with mean 0 and unit variance, and
where Xij is the (ni × p × M) array of known fixed effects explanatory
variables, β is the p-dimensional vector of fixed effects coefficients, Zij is
the (ni× q×M) array of known random effects explanatory variables and
bi is the q-dimensional vector of random effects.

1.0.6 Quantities of Interest

� The predicted values (qi$pr) are draws from the Binomial distribution
with mean equal to the simulated expected value, πij for

πij = Φ(Xijβ + Zijbi)

given Xij and Zij and simulations of of β and bi from their posterior
distributions. The estimated variance covariance matrices are taken as
correct and are themselves not simulated.

� The expected values (qi$ev) are simulations of the predicted probability
of a success given draws of β from its posterior:

E(Yij |Xij) = πij = Φ(Xijβ).

� The first difference (qi$fd) is given by the difference in predicted prob-
abilities, conditional on Xij and X ′

ij , representing different values of the
explanatory variables.

FD(Yij |Xij , X
′
ij) = Pr(Yij = 1|Xij)− Pr(Yij = 1|X ′

ij)
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� The risk ratio (qi$rr) is defined as

RR(Yij |Xij , X
′
ij) =

Pr(Yij = 1|Xij)
Pr(Yij = 1|X ′

ij)

� In conditional prediction models, the average predicted treatment effect
(qi$att.pr) for the treatment group is given by

1∑M
i=1

∑ni

j=1 tij

M∑
i=1

ni∑
j:tij=1

{Yij(tij = 1)− ̂Yij(tij = 0)},

where tij is a binary explanatory variable defining the treatment (tij =
1) and control (tij = 0) groups. Variation in the simulations is due to
uncertainty in simulating Yij(tij = 0), the counterfactual predicted value
of Yij for observations in the treatment group, under the assumption that
everything stays the same except that the treatment indicator is switched
to tij = 0.

� In conditional prediction models, the average expected treatment effect
(qi$att.ev) for the treatment group is given by

1∑M
i=1

∑ni

j=1 tij

M∑
i=1

ni∑
j:tij=1

{Yij(tij = 1)− E[Yij(tij = 0)]},

where tij is a binary explanatory variable defining the treatment (tij = 1)
and control (tij = 0) groups. Variation in the simulations is due to un-
certainty in simulating E[Yij(tij = 0)], the counterfactual expected value
of Yij for observations in the treatment group, under the assumption that
everything stays the same except that the treatment indicator is switched
to tij = 0.

1.0.7 Output Values

The output of each Zelig command contains useful information which you may
view. You may examine the available information in z.out by using slotNames(z.out),
see the fixed effect coefficients by using summary(z.out)@coefs, and a default
summary of information through summary(z.out). Other elements available
through the operator are listed below.

� From the zelig() output stored in summary(z.out), you may extract:

– fixef: numeric vector containing the conditional estimates of the
fixed effects.

– ranef: numeric vector containing the conditional modes of the ran-
dom effects.

– frame: the model frame for the model.
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� From the sim() output stored in s.out, you may extract quantities of
interest stored in a data frame:

– qi$pr: the simulated predicted values drawn from the distributions
defined by the expected values.

– qi$ev: the simulated expected values for the specified values of x.

– qi$fd: the simulated first differences in the expected values for the
values specified in x and x1.

– qi$ate.pr: the simulated average predicted treatment effect for the
treated from conditional prediction models.

– qi$ate.ev: the simulated average expected treatment effect for the
treated from conditional prediction models.

How to Cite the Multi-level Probit Model

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s
Statistical Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Com-
mon Framework for Statistical Analysis and Development.” Jour-
nal of Computational and Graphical Statistics, Vol. 17, No. 4
(December), pp. 892-913.

See also

Mixed effects probit regression is part of lme4 package by Douglas M. Bates [1].
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