
1 blogit: Bivariate Logistic Regression for Two
Dichotomous Dependent Variables

Use the bivariate logistic regression model if you have two binary dependent
variables (Y1, Y2), and wish to model them jointly as a function of some ex-
planatory variables. Each pair of dependent variables (Yi1, Yi2) has four po-
tential outcomes, (Yi1 = 1, Yi2 = 1), (Yi1 = 1, Yi2 = 0), (Yi1 = 0, Yi2 = 1),
and (Yi1 = 0, Yi2 = 0). The joint probability for each of these four outcomes
is modeled with three systematic components: the marginal Pr(Yi1 = 1) and
Pr(Yi2 = 1), and the odds ratio ψ, which describes the dependence of one
marginal on the other. Each of these systematic components may be modeled
as functions of (possibly different) sets of explanatory variables.

1.0.1 Syntax

> z.out <- zelig(list(mu1 = Y1 ~ X1 + X2 ,
mu2 = Y2 ~ X1 + X3),

model = "blogit", data = mydata)
> x.out <- setx(z.out)
> s.out <- sim(z.out, x = x.out)

1.0.2 Input Values

In every bivariate logit specification, there are three equations which correspond
to each dependent variable (Y1, Y2), and ψ, the odds ratio. You should provide
a list of formulas for each equation or, you may use cbind() if the right hand
side is the same for both equations

> formulae <- list(cbind(Y1,Y2) ~ X1 + X2)

which means that all the explanatory variables in equations 1 and 2 (corre-
sponding to Y1 and Y2) are included, but only an intercept is estimated (all
explanatory variables are omitted) for equation 3 (ψ).

You may use the function tag() to constrain variables across equations:

> formulae <- list(mu1 = y1 ~ x1 + tag(x3, "x3"),

+ mu2 = y2 ~ x2 + tag(x3, "x3"))

where tag() is a special function that constrains variables to have the same effect
across equations. Thus, the coefficient for x3 in equation mu1 is constrained to
be equal to the coefficient for x3 in equation mu2.

1.0.3 Examples

1. Basic Example

Load the data and estimate the model:
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> data(sanction)

> ## sanction

> z.out1 <- zelig(cbind(import, export) ~ coop + cost + target,

+ model = "blogit", data = sanction)

By default, zelig() estimates two effect parameters for each explana-
tory variable in addition to the odds ratio parameter; this formulation
is parametrically independent (estimating unconstrained effects for each
explanatory variable), but stochastically dependent because the models
share an odds ratio.

Generate baseline values for the explanatory variables (with cost set to
1, net gain to sender) and alternative values (with cost set to 4, major loss
to sender):

> x.low <- setx(z.out1, cost = 1)

> x.high <- setx(z.out1, cost = 4)

Simulate fitted values and first differences:

> s.out1 <- sim(z.out1, x = x.low, x1 = x.high)

> summary(s.out1)

> plot(s.out1)
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Predicted Probabilities: Pr(Y1=k|X)
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2. Joint Estimation of a Model with Different Sets of Explanatory Variables

Using sample data sanction, estimate the statistical model, with import
a function of coop in the first equation and export a function of cost and
target in the second equation:

> z.out2 <- zelig(list(import ~ coop, export ~ cost + target),

+ model = "blogit", data = sanction)

> summary(z.out2)

Set the explanatory variables to their means:

> x.out2 <- setx(z.out2)

Simulate draws from the posterior distribution:

> s.out2 <- sim(z.out2, x = x.out2)

> summary(s.out2)

> plot(s.out2)
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Predicted Probabilities: Pr(Y1=k|X)
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1.0.4 Model

For each observation, define two binary dependent variables, Y1 and Y2, each
of which take the value of either 0 or 1 (in the following, we suppress the
observation index). We model the joint outcome (Y1, Y2) using a marginal
probability for each dependent variable, and the odds ratio, which parameterizes
the relationship between the two dependent variables. Define Yrs such that it
is equal to 1 when Y1 = r and Y2 = s and is 0 otherwise, where r and s take a
value of either 0 or 1. Then, the model is defined as follows,

� The stochastic component is

Y11 ∼ Bernoulli(y11 | π11)
Y10 ∼ Bernoulli(y10 | π10)
Y01 ∼ Bernoulli(y01 | π01)

where πrs = Pr(Y1 = r, Y2 = s) is the joint probability, and π00 = 1 −
π11 − π10 − π01.

� The systematic components model the marginal probabilities, πj = Pr(Yj =
1), as well as the odds ratio. The odds ratio is defined as ψ = π00π01/π10π11

and describes the relationship between the two outcomes. Thus, for each
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observation we have

πj =
1

1 + exp(−xjβj)
for j = 1, 2,

ψ = exp(x3β3).

1.0.5 Quantities of Interest

� The expected values (qi$ev) for the bivariate logit model are the pre-
dicted joint probabilities. Simulations of β1, β2, and β3 (drawn from their
sampling distributions) are substituted into the systematic components
(π1, π2, ψ) to find simulations of the predicted joint probabilities:

π11 =
{

1
2 (ψ − 1)−1 − a−

√
a2 + b for ψ 6= 1

π1π2 for ψ = 1
,

π10 = π1 − π11,

π01 = π2 − π11,

π00 = 1− π10 − π01 − π11,

where a = 1 + (π1 + π2)(ψ − 1), b = −4ψ(ψ − 1)π1π2, and the joint
probabilities for each observation must sum to one. For n simulations, the
expected values form an n× 4 matrix for each observation in x.

� The predicted values (qi$pr) are draws from the multinomial distribution
given the expected joint probabilities.

� The first differences (qi$fd) for each of the predicted joint probabilities
are given by

FDrs = Pr(Y1 = r, Y2 = s | x1)− Pr(Y1 = r, Y2 = s | x).

� The risk ratio (qi$rr) for each of the predicted joint probabilities are
given by

RRrs =
Pr(Y1 = r, Y2 = s | x1)
Pr(Y1 = r, Y2 = s | x)

� In conditional prediction models, the average expected treatment effect
(att.ev) for the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{Yij(ti = 1)− E[Yij(ti = 0)]} for j = 1, 2,

where ti is a binary explanatory variable defining the treatment (ti = 1)
and control (ti = 0) groups. Variation in the simulations are due to
uncertainty in simulating E[Yij(ti = 0)], the counterfactual expected value
of Yij for observations in the treatment group, under the assumption that
everything stays the same except that the treatment indicator is switched
to ti = 0.
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� In conditional prediction models, the average predicted treatment effect
(att.pr) for the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{
Yij(ti = 1)− ̂Yij(ti = 0)

}
for j = 1, 2,

where ti is a binary explanatory variable defining the treatment (ti = 1)
and control (ti = 0) groups. Variation in the simulations are due to
uncertainty in simulating ̂Yij(ti = 0), the counterfactual predicted value
of Yij for observations in the treatment group, under the assumption that
everything stays the same except that the treatment indicator is switched
to ti = 0.

1.0.6 Output Values

The output of each Zelig command contains useful information which you may
view. For example, if you run z.out <- zelig(y ~ x, model = "blogit",
data), then you may examine the available information in z.out by using
names(z.out), see the coefficients by using z.out$coefficients, and ob-
tain a default summary of information through summary(z.out). Other ele-
ments available through the $ operator are listed below.

� From the zelig() output object z.out, you may extract:

– coefficients: the named vector of coefficients.

– fitted.values: an n× 4 matrix of the in-sample fitted values.

– predictors: an n× 3 matrix of the linear predictors xjβj .

– residuals: an n× 3 matrix of the residuals.

– df.residual: the residual degrees of freedom.

– df.total: the total degrees of freedom.

– rss: the residual sum of squares.

– y: an n× 2 matrix of the dependent variables.

– zelig.data: the input data frame if save.data = TRUE.

� From summary(z.out), you may extract:

– coef3: a table of the coefficients with their associated standard errors
and t-statistics.

– cov.unscaled: the variance-covariance matrix.

– pearson.resid: an n× 3 matrix of the Pearson residuals.

� From the sim() output object s.out, you may extract quantities of inter-
est arranged as arrays indexed by simulation × quantity × x-observation
(for more than one x-observation; otherwise the quantities are matrices).
Available quantities are:
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– qi$ev: the simulated expected joint probabilities (or expected values)
for the specified values of x.

– qi$pr: the simulated predicted outcomes drawn from a distribution
defined by the expected joint probabilities.

– qi$fd: the simulated first difference in the expected joint probabili-
ties for the values specified in x and x1.

– qi$rr: the simulated risk ratio in the predicted probabilities for given
x and x1.

– qi$att.ev: the simulated average expected treatment effect for the
treated from conditional prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the
treated from conditional prediction models.

How to Cite the Bivariate Logit Model

Olivia Lau, Kosuke Imai, and Gary King. Bivariate Logistic Regression for Two
Dichotomous Dependent Variables, 2011

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s
Statistical Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Com-
mon Framework for Statistical Analysis and Development.” Jour-
nal of Computational and Graphical Statistics, Vol. 17, No. 4
(December), pp. 892-913.

See also

The bivariate logit function is part of the VGAM package by Thomas Yee [3]. In
addition, advanced users may wish to refer to help(vglm) in the VGAM library.
Additional documentation is available at http://www.stat.auckland.ac.nz/˜ yee.Sample
data are from [2]
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