0.1 netls: Network Least Squares Regression for Con-
tinuous Proximity Matrix Dependent Variables

Use network least squares regression analysis to estimate the best linear predictor when the
dependent variable is a continuously-valued proximity matrix (a.k.a. sociomatrices, adjacency
matrices, or matrix representations of directed graphs).

Syntax

> z.out <- zelig(y © x1 + x2, model = "netls", data = mydata)
> x.out <- setx(z.out)
> s.out <- sim(z.out, x = x.out)

Examples

1. Basic Example with First Differences

Load sample data and format it for social networkx analysis:

> data(sna.ex)

Estimate model:

> z.out <- zelig(Varl ~ Var2 + Var3 + Var4, model = "netls", data = sna.ex)
Summarize regression results:

> summary(z.out)

Set explanatory variables to their default (mean/mode) values, with high (80th per-
centile) and low (20th percentile) for the second explanatory variable (Var3).

> x.high <- setx(z.out, Var3 = quantile(sna.ex$Var3, 0.8))
> x.low <- setx(z.out, Var3 = quantile(sna.ex$Var3, 0.2))

Generate first differences for the effect of high versus low values of Var3 on the outcome
variable.

> try(s.out <- sim(z.out, x = x.high, x1 = x.low))
> try(summary(s.out))

> plot(s.out)
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Model

The netls model performs a least squares regression of the sociomatrix Y, a m X m matrix
representing network ties, on a set of sociomatrices X. This network regression model is
a directly analogue to standard least squares regression element-wise on the appropriately
vectorized matrices. Sociomatrices are vectorized by creating Y, an m?x 1 vector to represent
the sociomatrix. The vectorization which produces the Y vector from the Y matrix is
preformed by simple row-concatenation of Y. For example if Y is a 15 x 15 matrix, the Y
element is the first element of Y, and the Y5, element is the second element of Y and so on.
Once the input matrices are vectorized, standard least squares regression is performed. As
such:

e The stochastic component is described by a density with mean p; and the common
variance o2

Y; ~ f(yilp, o®).



e The systematic component models the conditional mean as
pi = ;3
where x; is the vector of covariates, and (3 is the vector of coefficients.
The least squares estimator is the best linear predictor of a dependent variable given x;, and
minimizes the sum of squared errors ., (Y; — 2;3)*.
Quantities of Interest

The quantities of interest for the network least squares regression are the same as those for
the standard least squares regression.

e The expected value (qi$ev) is the mean of simulations from the stochastic component,
E(Y) =z,
given a draw of [ from its sampling distribution.
e The first difference (qi$£fd) is:
FD=E(Y|x,)— E(Y|x)

Output Values

The output of each Zelig command contains useful information which you may view. For
example, you run z.out <- zelig(y x, model="netls", data), then you may exam-
ine the available information in z.out by using names(z.out), see the coefficients by us-
ing z.out$coefficients, and a default summary of information through summary(z.out).
Other elements available through the $ operator are listed below.

e From the zelig() output stored in z.out, you may extract:
— coefficients: parameter estimates for the explanatory variables.
— fitted.values: the vector of fitted values for the explanatory variables.
— residuals: the working residuals in the final iteration of the IWLS fit.
— df .residual: the residual degrees of freedom.

— zelig.data: the input data frame if save.data = TRUE
e From summary(z.out), you may extract:

— mod.coefficients: the parameter estimates with their associated standard er-
rors, p-values, and t statistics.
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— sigma: the square root of the estimate variance of the random error e:
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— r.squared: the fraction of the variance explained by the model.
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— adj.r.squared: the above R? statistic, penalizing for an increased number of
explanatory variables.
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— cov.unscaled: a k X k matrix of unscaled covariances.
e From the sim() output stored in s.out, you may extract:

— qgi$ev: the simulated expected values for the specified values of x.

— qi$fd: the simulated first differences (or differences in expected values) for the
specified values of x and x1.

How to Cite
To cite the netls Zelig model:

Skyler J. Cranmer. 2007. “netls: Network Least Squares Regression for Continu-
ous Proximity Matrix Dependent Variables,” in Kosuke Imai, Gary King, and
Olivia Lau, “Zelig: Everyone’s Statistical Software,” http://gking.harvard.
edu/zelig,.

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig,

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Toward A Common Frame-
work for Statistical Analysis and Development,” http://gking.harvard.
edu/files/abs/z-abs.shtml.

See also

The network least squares regression is part of the sna package by Carter T. Butts (Butts
and Carley 2001).In addition, advanced users may wish to refer to help(netlm).
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