
0.1 gam.normal: Generalized Additive Model for Con-

tinuous Dependent Variables

This function runs a nonparametric Generalized Additive Model (GAM) for continuous de-
pendent variables.

Syntax

> z.out <- zelig(y ~ x1 + s(x2), model = "gam.normal", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Where s() indicates a variable to be estimated via nonparametric smooth. All variables for
which s() is not specified, are estimated via standard parametric methods.

Additional Inputs

In addition to the standard inputs, zelig() takes the following additional options for GAM
models.

� method: Controls the fitting method to be used. Fitting methods are selected via a
list environment within method=gam.method(). See gam.method() for details.

� scale: Generalized Cross Validation (GCV) is used if scale = 0 (see the “Model” sec-
tion for details) except for Normal models where a Un-Biased Risk Estimator (UBRE)
(also see the “Model” section for details) is used with a scale parameter assumed to be
1. If scale is greater than 1, it is assumed to be the scale parameter/variance and
UBRE is used. If scale is negative GCV is used.

� knots: An optional list of knot values to be used for the construction of basis functions.

� H: A user supplied fixed quadratic penalty on the parameters of the GAM can be
supplied with this as its coefficient matrix. For example, ridge penalties can be added
to the parameters of the GAM to aid in identification on the scale of the linear predictor.

� sp: A vector of smoothing parameters for each term.

� ...: additional options passed to the gam.normal model. See the mgcv library for
details.

Examples

1. Basic Example:

Create some data:
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> set.seed(0); n <- 400; sig <- 2;

> x0 <- runif(n, 0, 1); x1 <- runif(n, 0, 1)

> x2 <- runif(n, 0, 1); x3 <- runif(n, 0, 1)

> f0 <- function(x) 2 * sin(pi * x)

> f1 <- function(x) exp(2 * x)

> f2 <- function(x) 0.2 * x^11 * (10 * (1 - x))^6 + 10 * (10 *

+ x)^3 * (1 - x)^10

> f3 <- function(x) 0 * x

> f <- f0(x0) + f1(x1) + f2(x2)

> e <- rnorm(n, 0, sig); y <- f + e

> my.data <- as.data.frame(cbind(y, x0, x1, x2, x3))

Estimate the model, summarize the results, and plot nonlinearities:

> z.out <- zelig(y ~ s(x0) + s(x1) + s(x2) + s(x3), model = "gam.normal",

+ data = my.data)

> summary(z.out)

> plot(z.out, pages = 1, residuals = TRUE)

Note that the plot() function can be used after model estimation and before simulation
to view the nonlinear relationships in the independent variables:

Set values for the explanatory variables to their default (mean/mode) values, then
simulate, summarize and plot quantities of interest:

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

> summary(s.out)

> plot(s.out)

2. Simulating First Differences

Estimating the risk difference (and risk ratio) between low values (20th percentile) and
high values (80th percentile) of the explanatory variable x3 while all the other variables
are held at their default (mean/mode) values.

> x.high <- setx(z.out, x3 = quantile(my.data$x3, 0.8))

> x.low <- setx(z.out, x3 = quantile(my.data$x3, 0.2))

> s.out <- sim(z.out, x = x.high, x1 = x.low)

> summary(s.out)

> plot(s.out)

3. Variations in GAM model specification. Note that setx and sim work as shown in the
above examples for any GAM model. As such, in the interest of parsimony, I will not
re-specify the simulations of quantities of interest.
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An extra ridge penalty (useful with convergence problems):

> z.out <- zelig(y ~ s(x0) + s(x1) + s(x2) + s(x3), H = diag(0.5,

+ 37), model = "gam.normal", data = my.data)

> summary(z.out)

> plot(z.out, pages = 1, residuals = TRUE)

Set the smoothing parameter for the first term, estimate the rest:

> z.out <- zelig(y ~ s(x0) + s(x1) + s(x2) + s(x3), sp = c(0.01,

+ -1, -1, -1), model = "gam.normal", data = my.data)

> summary(z.out)

> plot(z.out, pages = 1)

Set lower bounds on smoothing parameters:

> z.out <- zelig(y ~ s(x0) + s(x1) + s(x2) + s(x3), min.sp = c(0.001,
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+ 0.01, 0, 10), model = "gam.normal", data = my.data)

> summary(z.out)

> plot(z.out, pages = 1)

A GAM with 3df regression spline term & 2 penalized terms:

> z.out <- zelig(y ~ s(x0, k = 4, fx = TRUE, bs = "tp") + s(x1,

+ k = 12) + s(x2, k = 15), model = "gam.normal", data = my.data)

> summary(z.out)

> plot(z.out, pages = 1)

Model

GAM models use families the same way GLM models do: they specify the distribution and
link function to use in model fitting. In the case of gam.normal a normal link function is
used. Specifically, let Yi be the continuous dependent variable for observation i.
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� The stochastic component is described by a univariate normal model with a vector of
means µi and scalar variance σ2:

Yi ∼ Normal(µi, σ
2).

� The systematic component is given by:

µi = xiβ +
J∑

j=1

fj(Zj).

where xi is the vector of k explanatory variables, β is the vector of coefficients and
fj(Zj) for j = 1, . . . J is the set of smooth terms.

Generalized additive models (GAMs) are similar in many respects to generalized linear
models (GLMs). Specifically, GAMs are generally fit by penalized maximum likelihood
estimation and GAMs have (or can have) a parametric component identical to that of a
GLM. The difference is that GAMs also include in their linear predictors a specified sum of
smooth functions.

In this GAM implementation, smooth functions are represented using penalized regression
splines. Two techniques may be used to estimate smoothing parameters: Generalized Cross
Validation (GCV),

n
D

(n−DF )2
, (1)

or an Un-Biased Risk Estimator (UBRE) (which is effectively just a rescaled AIC),

D

n
+ 2s

DF

n− s
, (2)

where D is the deviance, n is the number of observations, s is the scale parameter, and DF
is the effective degrees of freedom of the model. The use of GCV or UBRE can be set by
the user with the scale command described in the “Additional Inputs” section and in either
case, smoothing parameters are chosen to minimize the GCV or UBRE score for the model.

Estimation for GAM models proceeds as follows: first, basis functions and a set (one
or more) of quadratic penalty coefficient matrices are constructed for each smooth term.
Second, a model matrix is is obtained for the parametric component of the GAM. These
matrices are combined to produce a complete model matrix and a set of penalty matrices
for the smooth terms. Iteratively Reweighted Least Squares (IRLS) is then used to estimate
the model; at each iteration of the IRLS, a penalized weighted least squares model is run
and the smoothing parameters of that model are estimated by GCV or UBRE. This process
is repeated until convergence is achieved.

Further details of the GAM fitting process are given in Wood (2000, 2004, 2006).
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Quantities of Interest

The quantities of interest for the gam.normal model are the same as those for the standard
Normal regression.

� The expected value (qi$ev) for the gam.normal model is the mean of simulations from
the stochastic component,

E(Y ) = µi = xiβ +
J∑

j=1

fj(Zj).

� The predicted value (qi$pr) is a draw from the Normal distribution defined by the set
of parameters (µi, σ

2).

� The first difference (qi$fd) for the GAM Normal model is defined as

FD = Pr(Y |w1)− Pr(Y |w)

for w = {X, Z}.

Output Values

The output of each Zelig command contains useful information which you may view. For ex-
ample, if you run z.out <- zelig(y ~ x, model = "gam.normal", data), then you may
examine the available information in z.out by using names(z.out), see the coefficients by us-
ing coefficients(z.out), and a default summary of information through summary(z.out).
Other elements available through the $ operator are listed below.

� From the zelig() output stored in z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– fitted.values: the vector of fitted values for the explanatory variables.

– residuals: the working residuals in the final iteration of the IRLS fit.

– linear.predictors: the vector of xiβ.

– aic: Akaike’s Information Criterion (minus twice the maximized log-likelihood
plus twice the number of coefficients).

– method: the fitting method used.

– converged: logical indicating weather the model converged or not.

– smooth: information about the smoothed parameters.

– df.residual: the residual degrees of freedom.

– df.null: the residual degrees of freedom for the null model.

– data: the input data frame.
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– model: the model matrix used.

� From summary(z.out)(as well as from zelig()), you may extract:

– p.coeff: the coefficients of the parametric components of the model.

– se: the standard errors of the entire model.

– p.table: the coefficients, standard errors, and associated t statistics for the para-
metric portion of the model.

– s.table: the table of estimated degrees of freedom, estimated rank, F statistics,
and p-values for the nonparametric portion of the model.

– cov.scaled: a k × k matrix of scaled covariances.

– cov.unscaled: a k × k matrix of unscaled covariances.

� From the sim() output stored in s.out, you may extract:

– qi$ev: the simulated expected probabilities for the specified values of x.

– qi$pr: the simulated predicted values for the specified values of x.

– qi$fd: the simulated first differences in the expected probabilities simulated from
x and x1.

How to Cite

To cite the gam.normal Zelig model:

Skyler J. Cranmer. 2007. “gam.normal: Generalized Additive Model for Di-
chotomous Dependent Variables,” in Kosuke Imai, Gary King, and Olivia Lau,
“Zelig: Everyone’s Statistical Software,”http://gking.harvard.edu/zelig.

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Toward A Common Frame-
work for Statistical Analysis and Development,” http://gking.harvard.

edu/files/abs/z-abs.shtml.

See also

The gam.logit model is adapted from the mgcv package by Simon N. Wood (Wood 2006).
Advanced users may wish to refer to help(gam), Wood (2004), Wood (2000), and other
documentation accompanying the mgcv package. All examples are reproduced and extended
from mgcv’s gam() help pages.
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