Chapter 1

R Objects

In R, objects can have one or more classes, consisting of the class of the scalar value and the
class of the data structure holding the scalar value. Use the is() command to determine
what an object is. If you are already familiar with R objects, you may skip to Section ?7?
for loading data, or Section ?? for a description of Zelig commands.

1.1 Scalar Values

R uses several classes of scalar values, from which it constructs larger data structures. R
is highly class-dependent: certain operations will only work on certain types of values or
certain types of data structures. We list the three basic types of scalar values here for your
reference:

1. Numeric is the default value type for most numbers. An integer is a subset of the
numeric class, and may be used as a numeric value. You can perform any type of
math or logical operation on numeric values, including:

> log(3 * 4 x (2 + pi)) # Note that pi is a built-in constant,
[1] 4.122270 # and log() the natural log function.
>2>3 # Basic logical operations, including >,
[1] FALSE # <, >= (greater than or equals),
# <= (less than or equals), == (exactly
# equals), and != (not equals).
> 3 >= 2 &% 100 == 1000/10 # Advanced logical operations, including
[1] TRUE # & (and), && (if and only if), | (or),
# and || (either or).

Note that Inf (infinity), -Inf (negative infinity), NA (missing value), and NaN (not a
number) are special numeric values on which most math operations will fail. (Logical
operations will work, however.)



2. Logical operations create logical values of either TRUE or FALSE. To convert logical
values to numerical values, use the as.integer() command:

> as.integer (TRUE)
[1] 1

> as.integer (FALSE)
[1] ©

3. Character values are text strings. For example,

> text <- "supercalafragilisticxpaladocious"
> text
[1] "supercalafragilisticxpaladocious"

assigns the text string on the right-hand side of the <- to the named object in your
workspace. Text strings are primarily used with data frames, described in the next
section. R always returns character strings in quotes.

1.2 Data Structures

1.2.1 Arrays

Arrays are data structures that consist of only one type of scalar value (e.g., a vector of char-
acter strings, or a matrix of numeric values). The most common versions, one-dimensional
and two-dimensional arrays, are known as vectors and matrices, respectively.

Ways to create arrays

1. Common ways to create vectors (or one-dimensional arrays) include:

>a<-¢(3, 7,9, 11) # Concatenates numeric values into a vector

> a <- c("a", "b", "c") # Concatenates character strings into a vector

> a <-1:5 # Creates a vector of integers from 1 to 5 inclusive
> a <- rep(l, times = 5) # Creates a vector of 5 repeated “1's

To manipulate a vector:

> al10] # Extracts the 10th value from the vector ~a'
> al[b] <- 3.14 # Inserts 3.14 as the 5th value in the vector ~a'
> al[b:7] <- c(2, 4, 7) # Replaces the 5th through 7th values with 2, 4, and 7

Unlike larger arrays, vectors can be extended without first creating another vector of
the correct length. Hence,



> a <- c(4, 6, 8)
> a[b] <- 9 # Inserts a 9 in the 5th position of the vector,
# automatically inserting an "NA' values position 4

. A factor vector is a special type of vector that allows users to create j indicator
variables in one vector, rather than using j dummy variables (as in Stata or SPSS).
R creates this special class of vector from a pre-existing vector x using the factor ()
command, which separates x into levels based on the discrete values observed in x.
These values may be either integer value or character strings. For example,

>x <-c¢c(1, 1,1, 1,1, 2, 2,2, 2,9, 9,9, 9

> factor(x)
[1] 11
Levels:

111222299909

129

By default, factor() creates unordered factors, which are treated as discrete, rather
than ordered, levels. Add the optional argument ordered = TRUE to order the factors
in the vector:

> x <- c("like", "dislike", "hate", "like", "don't know", "like", "dislike")
> factor(x, levels = c("hate", "dislike", "like", "don't know"),
+ ordered = TRUE)
[1] like dislike hate like don't know 1like dislike
Levels: hate < dislike < like < don't know

The factor() command orders the levels according to the order in the optional argu-
ment levels. If you omit the levels command, R will order the values as they occur in
the vector. Thus, omitting the levels argument sorts the levels as 1ike < dislike
< hate < don’t know in the example above. If you omit one or more of the levels in
the list of levels, R returns levels values of NA for the missing level(s):

> factor(x, levels = c("hate", "dislike", "like"), ordered = TRUE)
[1] 1like dislike hate like <NA> like dislike
Levels: hate < dislike < 1like

Use factored vectors within data frames for plotting (see Section ?7), to set the values
of the explanatory variables using setx (see Section ?7) and in the ordinal logit and
multinomial logit models (see Section ?7).

. Build matrices (or two-dimensional arrays) from vectors (one-dimensional arrays).
You can create a matrix in two ways:

(a) From a vector: Use the command matrix(vector, nrow = k, ncol = n) to
create a k X n matrix from the vector by filling in the columns from left to right.
For example,



> matrix(c(1,2,3,4,5,6), nrow = 2, ncol = 3)

[,11 [,2] [,3] # Note that when assigning a vector to a
[1,] 1 3 5 # matrix, none of the rows or columns
[2,] 2 4 6 # have names.

(b) From two or more vectors of length k: Use cbind () to combine n vectors vertically
to form a k X n matrix, or rbind() to combine n vectors horizontally to form a
n X k matrix. For example:

> x <- c(11, 12, 13) # Creates a vector “x' of 3 values.
>y <- c(65, 33, 12) # Creates another vector "y' of 3 values.
> rbind(x, y) # Creates a 2 x 3 matrix. Note that row
[,11 [,2]1 [,3] # 1 is named x and row 2 is named y,
x 11 12 13 # according to the order in which the
y 55 33 12 # arguments were passed to rbind().
> cbind(x, y) # Creates a 3 x 2 matrix. Note that the
Xy # columns are named according to the
[1,] 11 55 # order in which they were passed to
[2,] 12 33 # cbind().
[3,] 13 12

R supports a variety of matrix functions, including: det (), which returns the matrix’s
determinant; t (), which transposes the matrix; solve (), which inverts the the matrix;
and %x%, which multiplies two matricies. In addition, the dim() command returns the
dimensions of your matrix. As with vectors, square brackets extract specific values
from a matrix and the assignment mechanism <- replaces values. For example:

> lool[,3] # Extracts the third column of loo.

> loo[1,] # Extracts the first row of loo.

> loo[1,3] <- 13 # Inserts 13 as the value for row 1, column 3.
> loo[1,] <- c(2,2,3) # Replaces the first row of loo.

If you encounter problems replacing rows or columns, make sure that the dims() of
the vector matches the dims () of the matrix you are trying to replace.

. An n-dimensional array is a set of stacked matrices of identical dimensions. For
example, you may create a three dimensional array with dimensions (z, y, z) by stacking
z matrices each with x rows and y columns.

> a <- matrix(8, 2, 3) # Creates a 2 x 3 matrix populated with 8's.
> b <- matrix(9, 2, 3) # Creates a 2 x 3 matrix populated with 9's.
> array(c(a, b), c(2, 3, 2)) # Creates a 2 x 3 x 2 array with the first

, , 1 # level [,,1] populated with matrix a (8's),

# and the second level [,,2] populated



[,11 [,2]1 [,3] # with matrix b (9's).
[1,] 8 8 8
[2,] 8 8 8 # Use square brackets to extract values. For

# example, [1, 2, 2] extracts the second
, s 2 # value in the first row of the second level.
# You may also use the <- operator to

[,11 [,2] [,3] # replace values.

[1,] 9 9 9

[2,] 9 9 9

If an array is a one-dimensional vector or two-dimensional matrix, R will treat the
array using the more specific method.

Three functions especially helpful for arrays:

e is() returns both the type of scalar value that populates the array, as well as the
specific type of array (vector, matrix, or array more generally).

e dims() returns the size of an array, where

> dims(b)
[1] 33 5

indicates that the array is two-dimensional (a matrix), and has 33 rows and 5 columns.

e The single bracket [ ] indicates specific values in the array. Use commas to indicate
the index of the specific values you would like to pull out or replace:

> dims(a)
(1] 14
> al10] # Pull out the 10th value in the vector ~a'
> dims(b)
[1] 33 5
> bl1:12, 1 # Pull out the first 12 rows of “b'
> c[1, 2] # Pull out the value in the first row, second column of “c'
> dims(d)
[1] 1000 4 5
>d[ , 3, 11 # Pulls out a vector of 1,000 values

1.2.2 Lists

Unlike arrays, which contain only one type of scalar value, lists are flexible data structures
that can contain heterogeneous value types and heterogeneous data structures. Lists are so
flexible that one list can contain another list. For example, the list output can contain coef,

bt



a vector of regression coefficients; variance, the variance-covariance matrix; and another
list terms that describes the data using character strings. Use the names () function to view
the named elements in a list, and to extract a named element, use

> names (output)
[1] coefficients variance terms
> output$coefficients

For lists where the elements are not named, use double square brackets [[ ]] to extract
elements:

> L[[4]] # Extracts the 4th element from the list “L'
> L[[4]] <- b # Replaces the 4th element of the list “L' with a matrix “b'

Like vectors, lists are flexible data structures that can be extended without first creating
another list of with the correct number of elements:

> L <- 1ist(Q) # Creates an empty list
> L$coefficients <- c(1, 4, 6, 8) # Inserts a vector into the list, and
# names that vector “coefficients'
# within the list

> L[[4]] <- c(1, 4, 6, 8) # Inserts the vector into the 4th position
# 1in the list. If this list doesn't

# already have 4 elements, the empty

#

elements will be “NULL' values
Alternatively, you can easily create a list using objects that already exist in your workspace:

> L <- list(coefficients = k, variance = v) # Where k' is a vector and
# “v' is a matrix

1.2.3 Data Frames

A data frame (or data set) is a special type of list in which each variable is constrained
to have the same number of observations. A data frame may contain variables of different
types (numeric, integer, logical, character, and factor), so long as each variable has the same
number of observations.

Thus, a data frame can use both matrix commands and list commands to manipulate
variables and observations.

> dat[1:10,] # Extracts observations 1-10 and all associated variables
> dat[dat$grp == 1,] # Extracts all observations that belong to group 1
> group <- dat$grp # Saves the variable “grp' as a vector “group' in
# the workspace, not in the data frame
> var4d <- dat[[4]] # Saves the 4th variable as a “var4' in the workspace

For a comprehensive introduction to data frames and recoding data, see Section 77.



1.2.4 Identifying Objects and Data Structures

Each data structure has several attributes which describe it. Although these attributes are
normally invisible to users (e.g., not printed to the screen when one types the name of the
object), there are several helpful functions that display particular attributes:

e For arrays, dims () returns the size of each dimension.

e For arrays, is () returns the scalar value type and specific type of array (vector, matrix,
array). For more complex data structures, is() returns the default methods (classes)
for that object.

e For lists and data frames, names () returns the variable names, and str() returns the
variable names and a short description of each element.

For almost all data types, you may use summary() to get summary statistics.



Chapter 2

Programming Statements

This chapter introduces the main programming commands. These include functions, if-else
statements, for-loops, and special procedures for managing the inputs to statistical models.

2.1 Functions

Functions are either built-in or user-defined sets of encapsulated commands which may take
any number of arguments. Preface a function with the function statement and use the <-
operator to assign functions to objects in your workspace.

You may use functions to run the same procedure on different objects in your workspace.
For example,

check <- function(p, q) {
result <- (p - q)/q
result

¥

is a simple function with arguments p and q which calculates the difference between the ith
elements of the vector p and the ith element of the vector q as a proportion of the ith element
of q, and returns the resulting vector. For example, check(p = 10, q = 2) returns 4. You
may omit the descriptors as long as you keep the arguments in the correct order: check(10,
2) also returns 4. You may also use other objects as inputs to the function. If again = 10
and really = 2, then check(p = again, q = really) and check(again, really) also
returns 4.

Because functions run commands as a set, you should make sure that each command in
your function works by testing each line of the function at the R prompt.

2.2 If-Statements

Use if (and optionally, else) to control the flow of R functions. For example, let x and y
be scalar numerical values:



if (x ==y) { # If the logical statement in the ()'s is true,

x <- NA # then “x' is changed to “NA' (missing value).
}
else { # The “else' statement tells R what to do if

X <- x72 # the if-statement is false.
}

As with a function, use { and } to define the set of commands associated with each if and
else statement. (If you include if statements inside functions, you may have multiple sets of
nested curly braces.)

2.3 For-Loops

Use for to repeat (loop) operations. Avoiding loops by using matrix or vector commands is
usually faster and more elegant, but loops are sometimes necessary to assign values. If you
are using a loop to assign values to a data structure, you must first initialize an empty data
structure to hold the values you are assigning.

Select a data structure compatible with the type of output your loop will generate. If your
loop generates a scalar, store it in a vector (with the ith value in the vector corresponding
to the the ith run of the loop). If your loop generates vector output, store them as rows
(or columns) in a matrix, where the ith row (or column) corresponds to the ith iteration
of the loop. If your output consists of matrices, stack them into an array. For list output
(such as regression output) or output that changes dimensions in each iteration, use a list.
To initialize these data structures, use:

> x <- vector() # An empty vector of any length.
> x <= list() # An empty list of any length.

The vector () and 1ist () commands create a vector or list of any length, such that assigning
x[5] <- 15 automatically creates a vector with 5 elements, the first four of which are empty
values (NA). In contrast, the matrix() and array() commands create data structures that
are restricted to their original dimensions.

> x <- matrix(nrow = 5, ncol = 2) # A matrix with 5 rows and 2 columns.
> x <- array(dim = c¢(5,2,3)) # A 3D array of 3 stacked 5 by 2 matrices.

If you attempt to assign a value at (100,200, 20) to either of these data structures, R will
return an error message (“subscript is out of bounds”). R does not automatically extend the
dimensions of either a matrix or an array to accommodate additional values.

Example 1: Creating a vector with a logical statement

x <- array() # Initializes an empty data structure.
for (i in 1:10) { # Loops through every value from 1 to 10, replacing



if (is.integer(i/2)) { # the even values in “x' with i+5.
x[i] <- i + 5
}

+ # Enclose multiple commands in {}.

You may use for () inside or outside of functions.

Example 2: Creating dummy variables by hand You may also use a loop to create a
matrix of dummy variables to append to a data frame. For example, to generate fixed effects
for each state, let’s say that you have mydata which contains y, x1, x2, x3, and state, with
state a character variable with 50 unique values. There are three ways to create dummy
variables: 1) with a built-in R command; 2) with one loop; or 3) with 2 for loops.

1. R will create dummy variables on the fly from a single variable with distinct values.

> z.out <- zelig(y ~ x1 + x2 + x3 + as.factor(state),
data = mydata, model = "1ls")

This method returns k — 1 indicators for k states.

2. Alternatively, you can use a loop to create dummy variables by hand. There are
two ways to do this, but both start with the same initial commands. Using vector
commands, first create an index of for the states, and initialize a matrix to hold the
dummy variables:

idx <- sort(unique(mydata$state))
dummy <- matrix(NA, nrow = nrow(mydata), ncol = length(idx))

Now choose between the two methods.

(a) The first method is computationally inefficient, but more intuitive for users not
accustomed to vector operations. The first loop uses i as in index to loop through
all the rows, and the second loop uses j to loop through all 50 values in the vector
idx, which correspond to columns 1 through 50 in the matrix dummy.

for (i in 1:nrow(mydata)) {
for (j in 1:length(idx)) {
if (mydata$statel[i,j] == idx[j]l) {
dummy [i,j] <- 1
}
else {
dummy [i,j] <- 0O
}
}
}

10



Then add the new matrix of dummy variables to your data frame:

names (dummy) <- idx
mydata <- cbind(mydata, dummy)

(b) As you become more comfortable with vector operations, you can replace the
double loop procedure above with one loop:

for (j in 1:length(idx)) {
dummy [, j] <- as.integer(mydata$state == idx[j])
b

The single loop procedure evaluates each element in idx against the vector mydata$state.
This creates a vector of n TRUE/FALSE observations, which you may transform to

1’s and 0’s using as.integer (). Assign the resulting vector to the appropriate
column in dummy. Combine the dummy matrix with the data frame as above to
complete the procedure.

Example 3: Weighted regression with subsets Selecting the by option in zelig()
partitions the data frame and then automatically loops the specified model through each
partition. Suppose that mydata is a data frame with variables y, x1, x2, x3, and state,
with state a factor variable with 50 unique values. Let’s say that you would like to run a
weighted regression where each observation is weighted by the inverse of the standard error
on x1, estimated for that observation’s state. In other words, we need to first estimate the
model for each of the 50 states, calculate 1 / SE(x1;) for each state j = 1,...,50, and then
assign these weights to each observation in mydata.

e Estimate the model separate for each state using the by option in zelig():
z.out <- zelig(y = x1 + x2 + x3, by = "state", data = mydata, model = "ls")

Now z.out is a list of 50 regression outputs.

e Extract the standard error on x1 for each of the state level regressions.

se <- array() # Initalize the empty data structure.
for (i in 1:50) { # vcov() creates the variance matrix

se[i] <- sqrt(vcov(z.out[[i]])[2,2]) # Since we have an intercept, the 2nd
+ # diagonal value corresponds to x1.

e Create the vector of weights.
wts <- 1 / se

This vector wts has 50 values that correspond to the 50 sets of state-level regression
output in z.out.

11



e To assign the vector of weights to each observation, we need to match each observation’s
state designation to the appropriate state. For simplicity, assume that the states are
numbered 1 through 50.

mydata$w <- NA # Initalizing the empty variable
for (i in 1:50) {

mydata$w [mydata$state == i] <- wts[i]
+

We use mydata$state as the index (inside the square brackets) to assign values to
mydata$w. Thus, whenever state equals 5 for an observation, the loop assigns the
fiftth value in the vector wts to the variable w in mydata. If we had 500 observations
in mydata, we could use this method to match each of the 500 observations to the
appropriate wts.

If the states are character strings instead of integers, we can use a slightly more complex
version

mydata$w <- NA
idx <- sort(unique(mydata$state))
for (i in 1:length(idx) {
mydata$w [mydata$state == idx[i]] <- wts[i]
}

e Now we can run our weighted regression:

z.wtd <- zelig(y = x1 + x2 + x3, weights = w, data = mydata,
model = "1ls")

12



