
Chapter 1

Frequently Asked Questions

1.1 For All Zelig Users

How do I cite Zelig?

We would appreciate if you would cite Zelig as:

Imai, Kosuke, Gary King and Olivia Lau. 2006. “Zelig: Everyone’s Statistical
Software,” http://GKing.Harvard.Edu/zelig.

Please also cite the contributors for the models or methods you are using. These citations
can be found in the contributors section of each model or command page.

Why can’t I install Zelig?

You must be connected to the internet to install packages from web depositories. In addition,
there are a few platform-specific reasons why you may have installation problems:

� On Windows: If you are using the very latest version of R, you may not be able to
install Zelig until we update Zelig to work on the latest release of R. If you wish to
install Zelig in the interim, check the Zelig release notes (Section ??) and download
the appropriate version of R to work with the last release of Zelig. You may have to
manually download and install Zelig.

� On Mac or Linux systems: If you get the following warning message at the end of
your installation:

Installation of package VGAM had non-zero exit status in ...

this means that you were not able to install VGAM properly. Make sure that you have
the g77 Fortran compiler. For PowerPC Macs, download g77 from http://hpc.sourceforge.net).
For Intel Macs, download the xcode Apple developer tools. After installation, try to
install Zelig again.

1

http://GKing.Harvard.Edu/zelig
http://hpc.sourceforge.net
http://developer.apple.com/tools/xcode/

Why can’t I install R?

If you have problems installing R (rather than Zelig), you should check the R FAQs for your
platform. If you still have problems, you can search the archives for the R help mailing list,
or email the list directly at r-help@stat.math.ethz.ch.

Why can’t I load data?

When you start R, you need to specify your working directory. In linux R, this is done
pretty much automatically when you start R, whether within ESS or in a terminal window.
In Windows R, you may wish to specify a working directory so that you may load data
without typing in long directory paths to your data files, and it is important to remember
that Windows R uses the Linux directory delimiter. That is, if you right click and select
the “Properties” link on a Windows file, the slashes are backslashes (\), but Windows R
uses forward slashes (/) in directory paths. Thus, the Windows link may be C:\Program
Files\R\R-2.5.1\, but you would type C:/Program Files/R/R-2.5.1/ in Windows R.

When you start R in Windows, the working directory is by default the directory in which
the R executible is located.

Print your current working directory.

> getwd()

To read data not located in your working directory.

> data <- read.table("C:/Program Files/R/newwork/mydata.tab")

To change your working directory.

> setwd("C:/Program Files/R/newwork")

Reading data in your working directory.

> data <- read.data("mydata.tab")

Once you have set the working directory, you no longer need to type the entire directory
path.

Where can I find old versions of Zelig?

For some replications, you may require older versions of Zelig.

� Windows users may find old binaries at http://gking.harvard.edu/bin/windows/
contrib/ and selecting the appropriate version of R.

� Linux and MacOSX users may find source files at http://gking.harvard.edu/src/
contrib/

If you want an older version of Zelig because you are using an older version of R, we strongly
suggest that you update R and install the latest version of Zelig.

2

http://cran.r-project.org/faqs.html
https://www.stat.math.ethz.ch/mailman/listinfo/r-help
mailto:r-help@stat.math.ethz.ch
http://gking.harvard.edu/bin/windows/contrib/
http://gking.harvard.edu/bin/windows/contrib/
http://gking.harvard.edu/src/contrib/
http://gking.harvard.edu/src/contrib/

Some Zelig functions don’t work for me!

If this is a new phenomenon, there may be functions in your namespace that are overwriting
Zelig functions. In particular, if you have a function called zelig, setx, or sim in your
workspace, the corresponding functions in Zelig will not work. Rather than deleting things
that you need, R will tell you the following when you load the Zelig library:

Attaching package: 'Zelig'

The following object(s) are masked _by_ .GlobalEnv :

sim

In this case, simply rename your sim function to something else and load Zelig again:

> mysim <- sim

> detach(package:Zelig)

> library(Zelig)

Who can I ask for help? How do I report bugs?

If you find a bug, or cannot figure something out, please follow these steps: (1) Reread the
relevant section of the documentation. (2) Update Zelig if you don’t have the current version.
(3) Rerun the same code and see if the bug has been fixed. (4) Check our list of frequently
asked questions. (5) Search or browse messages to find a discussion of your issue on the zelig
listserv.

If none of these work, then if you haven’t already, please (6) subscribe to the Zelig listserv
and (7) send your question to the listserv at zelig@lists.gking.harvard.edu. Please
explain exactly what you did and include the full error message, including the traceback().
You should get an answer from the developers or another user in short order.

How do I increase the memory for R?

Windows users may get the error that R has run out of memory.
If you have R already installed and subsequently install more RAM, you may have to

reinstall R in order to take advantage of the additional capacity.
You may also set the amount of available memory manually. Close R, then right-click

on your R program icon (the icon on your desktop or in your programs directory). Select
“Properties”, and then select the “Shortcut” tab. Look for the “Target” field and after the
closing quotes around the location of the R executible, add

--max-mem-size=500M

as shown in the figure below. You may increase this value up to 2GB or the maximum
amount of physical RAM you have installed.

If you get the error that R cannot allocate a vector of length x, close out of R and add
the following line to the “Target” field:

3

http://gking.harvard.edu/zelig/docs/
http://gking.harvard.edu/zelig/docs/Installation.html
http://gking.harvard.edu/zelig/docs/Frequently_Asked_Quest.html
http://gking.harvard.edu/zelig/docs/Frequently_Asked_Quest.html
http://lists.hmdc.harvard.edu/lists/zelig/
http://lists.hmdc.harvard.edu/index.cgi?info=zelig

--max-vsize=500M

or as appropriate.
You can always check to see how much memory R has available by typing at the R prompt

> round(memory.limit()/2^20, 2)

which gives you the amount of available memory in MB.

Why doesn’t the pdf print properly?

Zelig uses several special LATEX environments. If the pdf looks right on the screen, there are
two possible reasons why it’s not printing properly:

4

� Adobe Acrobat isn’t cleaning up the document. Updating to Acrobat Reader 6.0.1 or
higher should solve this problem.

� Your printer doesn’t support PostScript Type 3 fonts. Updating your print driver
should take care of this problem.

R is neat. How can I find out more?

R is a collective project with contributors from all over the world. Their website (http://www.r-project.org)
has more information on the R project, R packages, conferences, and other learning material.

In addition, there are several canonical references which you may wish to peruse:

Venables, W.N. and B.D. Ripley. 2002. Modern Applied Statistics with S. 4th
Ed. Springer-Verlag.

Venables, W.N. and B.D. Ripley. 2000. S Programming. Springer-Verlag.

1.2 For Zelig Contributors

Where can I find the source code for Zelig?

Zelig is distributed under the GNU General Public License, Version 2. After installation, the
source code is located in your R library directory. For Linux users who have followed our
installation example, this is ~/.R/library/Zelig/. For Windows users under R 2.5.1, this
is by default C:\Program Files\R\R-2.5.1\library\Zelig\. For Macintosh users, this is
~/Library/R/library/Zelig/.

In addition, you may download the latest Zelig source code as a tarball’ed directory from
http://gking.harvard.edu/src/contrib/. (This makes it easier to distinguish functions
which are run together during installation.)

How can I make my R programs run faster?

Unlike most commercial statistics programs which rely on precompiled and pre-packaged
routines, R allows users to program functions and run them in the same environment. If
you notice a perceptible lag when running your R code, you may improve the performance
of your programs by taking the following steps:

� Reduce the number of loops. If it is absolutely necessary to run loops in loops, the
inside loop should have the most number of cycles because it runs faster than the
outside loop. Frequently, you can eliminate loops by using vectors rather than scalars.
Most R functions deal with vectors in an efficient and mathematically intuitive manner.

� Do away with loops altogether. You can vectorize functions using the apply, mapply(),
sapply(), lapply(), and replicate() functions. If you specify the function passed

5

http://www.r-project.org
http://www.gnu.org/licenses/gpl.txt
http://gking.harvard.edu/src/contrib/

to the above *apply() functions properly, the R consensus is that they should run
significantly faster than loops in general.

� You can compile your code using C or Fortran. R is not compiled, but can use bits
of precompiled code in C or Fortran, and calls that code seamlessly from within R
wrapper functions (which pass input from the R function to the C code and back to
R). Thus, almost every regression package includes C or Fortran algorithms, which are
locally compiled in the case of Linux systems or precompiled in the case of Windows
distributions. The recommended Linux compilers are gcc for C and g77 for Fortran,
so you should make sure that your code is compatible with those standards to achieve
the widest possible distribution.

Which compilers can I use with R and Zelig?

In general, the C or Fortran algorithms in your package should compile for any platform.
While Windows R packages are distributed as compiled binaries, Linux R compiles packages
locally during installation. Thus, to ensure the widest possible audience for your package,
you should make sure that your code will compile on gcc (for C and C++), or on g77 (for
Fortran).

6

