
Chapter 1

Data Analysis Commands

1.1 Command Syntax

Once R is installed, you only need to know a few basic elements to get started. It’s important
to remember that R, like any spoken language, has rules for proper syntax. Unlike English,
however, the rules for intelligible R are small in number and quite precise (see Section ??).

1.1.1 Getting Started

1. To start R under Linux or Unix, type R at the terminal prompt or M-x R under ESS.

2. The R prompt is >.

3. Type commands and hit enter to execute. (No additional characters, such as semicolons
or commas, are necessary at the end of lines.)

4. To quit from R, type q() and press enter.

5. The # character makes R ignore the rest of the line, and is used in this document to
comment R code.

6. We highly recommend that you make a separate working directory or folder for each
project.

7. Each R session has a workspace, or working memory, to store the objects that you
create or input. These objects may be:

(a) values, which include numerical, integer, character, and logical values;

(b) data structures made up of variables (vectors), matrices, and data frames; or

(c) functions that perform the desired tasks on user-specified values or data struc-
tures.

1

After starting R, you may at any time use Zelig’s built-in help function to access on-line
help for any command. To see help for all Zelig commands, type help.zelig(command),
which will take you to the help page for all Zelig commands. For help with a specific Zelig
or R command substitute the name of the command for the generic command. For example,
type help.zelig(logit) to view help for the logit model.

1.1.2 Details

.
Zelig uses the syntax of R, which has several essential elements:

1. R is case sensitive. Zelig, the package or library, is not the same as zelig, the
command.

2. R functions accept user-defined arguments: while some arguments are required, other
optional arguments modify the function’s default behavior. Enclose arguments in
parentheses and separate multiple arguments with commas. For example, print(x) or
print(x, digits = 2) prints the contents of the object x using the default number
of digits or rounds to two digits to the right of the decimal point, respectively. You
may nest commands as long as each has its own set of parentheses: log(sqrt(5))

takes the square root of 5 and then takes the natural log.

3. The <- operator takes the output of the function on the right and saves them in the
named object on the left. For example, z.out <- zelig(...) stores the output from
zelig() as the object z.out in your working memory. You may use z.out as an
argument in other functions, view the output by typing z.out at the R prompt, or
save z.out to a file using the procedures described in Section ??.

4. You may name your objects anything, within a few constraints:

� You may only use letters (in upper or lower case) and periods to punctuate your
variable names.

� You may not use any special characters (aside from the period) or spaces to
punctuate your variable names.

� Names cannot begin with numbers. For example, R will not let you save an object
as 1997.election but will let you save election.1997.

5. Use the names() command to see the contents of R objects, and the $ operator to
extract elements from R objects. For example:

Run least squares regression and save the output in working memory:

> z.out <- zelig(y ~ x1 + x2, model = "ls", data = mydata)

See what's in the R object:

> names(z.out)

2

[1] "coefficients" "residuals" "effects" "rank"

Extract and display the coefficients in z.out:

> z.out$coefficients

6. All objects have a class designation which tells R how to treat it in subsequent com-
mands. An object’s class is generated by the function or mathematical operation that
created it.

7. To see a list of all objects in your current workspace, type: ls(). You can remove an
object permanently from memory by typing remove(goo) (which deletes the object
goo), or remove all the objects with remove(list = ls()).

8. To run commands in a batch, use a text editor (such as the Windows R script editor
or emacs) to compose your R commands, and save the file with a .R file extension in
your working directory. To run the file, type source("Code.R") at the R prompt.

If you encounter a syntax error, check your spelling, case, parentheses, and commas.
These are the most common syntax errors, and are easy to detect and correct with a little
practice. If you encounter a syntax error in batch mode, R will tell you the line on which
the syntax error occurred.

1.2 Data Sets

1.2.1 Data Structures

Zelig uses only three of R’s many data structures:

1. A variable is a one-dimensional vector of length n.

2. A data frame is a rectangular matrix with n rows and k columns. Each column
represents a variable and each row an observation. Each variable may have a different
class. (See Section ?? for a list of classes.) You may refer to specific variables from a
data frame using, for example, data$variable.

3. A list is a combination of different data structures. For example, z.out contains both
coefficients (a vector) and data (a data frame). Use names() to view the elements
available within a list, and the $ operator to refer to an element in a list.

For a more comprehensive introduction, including ways to manipulate these data struc-
tures, please refer to Chapter ??.

1.2.2 Loading Data

Datasets in Zelig are stored in “data frames.” In this section, we explain the standard ways
to load data from disk into memory, how to handle special cases, and how to verify that the
data you loaded is what you think it is.

3

Standard Ways to Load Data

Make sure that the data file is saved in your working directory. You can check to see what
your working directory is by starting R, and typing getwd(). If you wish to use a different
directory as your starting directory, use setwd("dirpath"), where "dirpath" is the full
directory path of the directory you would like to use as your working directory.

After setting your working directory, load data using one of the following methods:

1. If your dataset is in a tab- or space-delimited .txt file, use read.table("mydata.txt")

2. If your dataset is a comma separated table, use read.csv("mydata.csv").

3. To import SPSS, Stata, and other data files, use the foreign package, which au-
tomatically preserves field characteristics for each variable. Thus, variables classed as
dates in Stata are automatically translated into values in the date class for R. For
example:

> library(foreign) # Load the foreign package.

> stata.data <- read.dta("mydata.dta") # For Stata data.

> spss.data <- read.spss("mydata.sav", to.data.frame = TRUE) # For SPSS.

4. To load data in R format, use load("mydata.RData").

5. For sample data sets included with R packages such as Zelig, you may use the data()

command, which is a shortcut for loading data from the sample data directories. Be-
cause the locations of these directories vary by installation, it is extremely difficult to
locate sample data sets and use one of the three preceding methods; data() searches
all of the currently used packages and loads sample data automatically. For example:

> library(Zelig) # Loads the Zelig library.

> data(turnout) # Loads the turnout data.

Special Cases When Loading Data

These procedures apply to any of the above read commands:

1. If your file uses the first row to identify variable names, you should use the option
header = TRUE to import those field names. For example,

> read.csv("mydata.csv", header = TRUE)

will read the words in the first row as the variable names and the subsequent rows
(each with the same number of values as the first) as observations for each of those
variables. If you have additional characters on the last line of the file or fewer values
in one of the rows, you need to edit the file before attempting to read the data.

4

2. The R missing value code is NA. If this value is in your data, R will recognize your
missing values as such. If you have instead used a place-holder value (such as -9) to
represent missing data, you need to tell R this on loading the data:

> read.table("mydata.tab", header = TRUE, na.strings = "-9")

Note: You must enclose your place holder values in quotes.

3. Unlike Windows, the file extension in R does not determine the default method for
dealing with the file. For example, if your data is tab-delimited, but saved as a .sav

file, read.table("mydata.sav") will load your data into R.

Verifying You Loaded The Data Correctly

Whichever method you use, try the names(), dim(), and summary() commands to verify
that the data was properly loaded. For example,

> data <- read.csv("mydata.csv", header = TRUE) # Read the data.

> dim(data) # Displays the dimensions of the data frame

[1] 16000 8 # in rows then columns.

> data[1:10,] # Display rows 1-10 and all columns.

> names(data) # Check the variable names.

[1] "V1" "V2" "V3" # These values indicate that the variables

weren't named, and took default values.

> names(data) <- c("income", "educate", "year") # Assign variable names.

> summary(data) # Returning a summary for each variable.

In this case, the summary() command will return the maximum, minimum, mean, median,
first and third quartiles, as well as the number of missing values for each variable.

1.2.3 Saving Data

Use save() to write data or any object to a file in your working directory. For example,

> save(mydata, file = "mydata.RData") # Saves `mydata' to `mydata.RData'

in your working directory.

> save.image() # Saves your entire workspace to

the default `.RData' file.

R will also prompt you to save your workspace when you use the q() command to quit.
When you start R again, it will load the previously saved workspace. Restarting R will not,
however, load previously used packages. You must remember to load Zelig at the beginning
of every R session.

Alternatively, you can recall individually saved objects from .RData files using the load()
command. For example,

5

> load("mydata.RData")

loads the objects saved in the mydata.RData file. You may save a data frame, a data frame
and associated functions, or other R objects to file.

1.3 Variables

1.3.1 Classes of Variables

R variables come in several types. Certain Zelig models require dependent variables of a
certain class of variable. (These are documented under the manual pages for each model.)
Use class(variable) to determine the class of a variable or class(data$variable) for a
variable within a data frame.

Types of Variables

For all types of variable (vectors), you may use the c() command to “concatenate” elements
into a vector, the : operator to generate a sequence of integer values, the seq() command
to generate a sequence of non-integer values, or the rep() function to repeat a value to a
specified length. In addition, you may use the <- operator to save variables (or any other
objects) to the workspace. For example:

> logic <- c(TRUE, FALSE, TRUE, TRUE, TRUE) # Creates `logic' (5 T/F values).

> var1 <- 10:20 # All integers between 10 and 20.

> var2 <- seq(from = 5, to = 10, by = 0.5) # Sequence from 5 to 10 by

intervals of 0.5.

> var3 <- rep(NA, length = 20) # 20 `NA' values.

> var4 <- c(rep(1, 15), rep(0, 15)) # 15 `1's followed by 15 `0's.

For the seq() command, you may alternatively specify length instead of by to create a
variable with a specific number (denoted by the length argument) of evenly spaced elements.

1. Numeric variables are real numbers and the default variable class for most dataset
values. You can perform any type of math or logical operation on numeric values. If
var1 and var2 are numeric variables, we can compute

> var3 <- log(var2) - 2*var1 # Create `var3' using math operations.

Inf (infinity), -Inf (negative infinity), NA (missing value), and NaN (not a number) are
special numeric values on which most math operations will fail. (Logical operations
will work, however.) Use as.numeric() to transform variables into numeric variables.
Integers are a special class of numeric variable.

6

2. Logical variables contain values of either TRUE or FALSE. R supports the following
logical operators: ==, exactly equals; >, greater than; <, less than; >=, greater than
or equals; <=, less than or equals; and !=, not equals. The = symbol is not a logical
operator. Refer to Section ?? for more detail on logical operators. If var1 and var2

both have n observations, commands such as

> var3 <- var1 < var2

> var3 <- var1 == var2

create n TRUE/FALSE observations such that the ith observation in var3 evaluates
whether the logical statement is true for the ith value of var1 with respect to the ith
value of var2. Logical variables should usually be converted to integer values prior to
analysis; use the as.integer() command.

3. Character variables are sets of text strings. Note that text strings are always enclosed
in quotes to denote that the string is a value, not an object in the workspace or an
argument for a function (neither of which take quotes). Variables of class character
are not normally used in data analysis, but used as descriptive fields. If a character
variable is used in a statistical operation, it must first be transformed into a factored
variable.

4. Factor variables may contain values consisting of either integers or character strings.
Use factor() or as.factor() to convert character or integer variables into factor
variables. Factor variables separate unique values into levels. These levels may either
be ordered or unordered. In practice, this means that including a factor variable among
the explanatory variables is equivalent to creating dummy variables for each level. In
addition, some models (ordinal logit, ordinal probit, and multinomial logit), require
that the dependent variable be a factor variable.

1.3.2 Recoding Variables

Researchers spend a significant amount of time cleaning and recoding data prior to beginning
their analyses. R has several procedures to facilitate the process.

Extracting, Replacing, and Generating New Variables

While it is not difficult to recode variables, the process is prone to human error. Thus,
we recommend that before altering the data, you save your existing data frame using the
procedures described in Section ??, that you only recode one variable at a time, and that
you recode the variable outside the data frame and then return it to the data frame.

To extract the variable you wish to recode, type:

> var <- data$var1 # Copies `var1' from `data', creating `var'.

7

Do not sort the extracted variable or delete observations from it. If you do, the ith observa-
tion in var will no longer match the ith observation in data.

To replace the variable or generate a new variable in the data frame, type:

> data$var1 <- var # Replace `var1' in `data' with `var'.

> data$new.var <- var # Generate `new.var' in `data' using `var'.

To remove a variable from a data frame (rather than replacing one variable with another):

> data$var1 <- NULL

Logical Operators

R has an intuitive method for recoding variables, which relies on logical operators that return
statements of TRUE and FALSE. A mathematical operator (such as ==, !=, >, >= <, and <=)
takes two objects of equal dimensions (scalars, vectors of the same length, matrices with
the same number of rows and columns, or similarly dimensioned arrays) and compares every
element in the first object to its counterpart in the second object.

� ==: checks that one variable “exactly equals” another in a list-wise manner. For
example:

> x <- c(1, 2, 3, 4, 5) # Creates the object `x'.

> y <- c(2, 3, 3, 5, 1) # Creates the object `y'.

> x == y # Only the 3rd `x' exactly equals

[1] FALSE FALSE TRUE FALSE FALSE # its counterpart in `y'.

(The = symbol is not a logical operator.)

� !=: checks that one variable does not equal the other in a list-wise manner. Continuing
the example:

> x != y

[1] TRUE TRUE FALSE TRUE TRUE

� > (>=): checks whether each element in the left-hand object is greater than (or equal
to) every element in the right-hand object. Continuing the example from above:

> x > y # Only the 5th `x' is greater

[1] FALSE FALSE FALSE FALSE TRUE # than its counterpart in `y'.

> x >= y # The 3rd `x' is equal to the

[1] FALSE FALSE TRUE FALSE TRUE # 3rd `y' and becomes TRUE.

� < (<=): checks whether each element in the left-hand object is less than (or equal to)
every object in the right-hand object. Continuing the example from above:

8

> x < y # The elements 1, 2, and 4 of `x' are

[1] TRUE TRUE FALSE TRUE FALSE # less than their counterparts in `y'.

> x <= y # The 3rd `x' is equal to the 3rd `y'

[1] TRUE TRUE TRUE TRUE FALSE # and becomes TRUE.

For two vectors of five elements, the mathematical operators compare the first element in
x to the first element in y, the second to the second and so forth. Thus, a mathematical
comparison of x and y returns a vector of five TRUE/FALSE statements. Similarly, for two
matrices with 3 rows and 20 columns each, the mathematical operators will return a 3× 20
matrix of logical values.

There are additional logical operators which allow you to combine and compare logical
statements:

� &: is the logical equivalent of “and”, and evaluates one array of logical statements
against another in a list-wise manner, returning a TRUE only if both are true in the
same location. For example:

> a <- matrix(c(1:12), nrow = 3, ncol = 4) # Creates a matrix `a'.

> a

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

> b <- matrix(c(12:1), nrow = 3, ncol = 4) # Creates a matrix `b'.

> b

[,1] [,2] [,3] [,4]

[1,] 12 9 6 3

[2,] 11 8 5 2

[3,] 10 7 4 1

> v1 <- a > 3 # Creates the matrix `v1' (T/F values).

> v2 <- b > 3 # Creates the matrix `v2' (T/F values).

> v1 & v2 # Checks if the (i,j) value in `v1' and

[,1] [,2] [,3] [,4] # `v2' are both TRUE. Because columns

[1,] FALSE TRUE TRUE FALSE # 2-4 of `v1' are TRUE, and columns 1-3

[2,] FALSE TRUE TRUE FALSE # of `var2' are TRUE, columns 2-3 are

[3,] FALSE TRUE TRUE FALSE # TRUE here.

> (a > 3) & (b > 3) # The same, in one step.

For more complex comparisons, parentheses may be necessary to delimit logical state-
ments.

� |: is the logical equivalent of “or”, and evaluates in a list-wise manner whether either
of the values are TRUE. Continuing the example from above:

9

> (a < 3) | (b < 3) # (1,1) and (2,1) in `a' are less

[,1] [,2] [,3] [,4] # than 3, and (2,4) and (3,4) in

[1,] TRUE FALSE FALSE FALSE # `b' are less than 3; | returns

[2,] TRUE FALSE FALSE TRUE # a matrix with `TRUE' in (1,1),

[3,] FALSE FALSE FALSE TRUE # (2,1), (2,4), and (3,4).

The && (if and only if) and || (either or) operators are used to control the command flow
within functions. The && operator returns a TRUE only if every element in the comparison
statement is true; the || operator returns a TRUE if any of the elements are true. Unlike
the & and | operators, which return arrays of logical values, the && and || operators return
only one logical statement irrespective of the dimensions of the objects under consideration.
Hence, && and || are logical operators which are not appropriate for recoding variables.

Coding and Recoding Variables

R uses vectors of logical statements to indicate how a variable should be coded or recoded.
For example, to create a new variable var3 equal to 1 if var1 < var2 and 0 otherwise:

> var3 <- var1 < var2 # Creates a vector of n T/F observations.

> var3 <- as.integer(var3) # Replaces the T/F values in `var3' with

1's for TRUE and 0's for FALSE.

> var3 <- as.integer(var1 < var2) # Combine the two steps above into one.

In addition to generating a vector of dummy variables, you can also refer to specific values
using logical operators defined in Section ??. For example:

> v1 <- var1 == 5 # Creates a vector of T/F statements.

> var1[v1] <- 4 # For every TRUE in `v1', replaces the

value in `var1' with a 4.

> var1[var1 == 5] <- 4 # The same, in one step.

The index (inside the square brackets) can be created with reference to other variables. For
example,

> var1[var2 == var3] <- 1

replaces the ith value in var1 with a 1 when the ith value in var2 equals the ith value in
var3. If you use = in place of ==, however, you will replace all the values in var1 with 1’s
because = is another way to assign variables. Thus, the statement var2 = var3 is of course
true.

Finally, you may also replace any (character, numerical, or logical) values with special
values (most commonly, NA).

> var1[var1 == "don't know"] <- NA # Replaces all "don't know"'s with NA's.

10

After recoding the var1 replace the old data$var1 with the recoded var1: data$var1

<- var1. You may combine the recoding and replacement procedures into one step. For
example:

> data$var1[data$var1 =< 0] <- -1

Alternatively, rather than recoding just specific values in variables, you may calculate
new variables from existing variables. For example,

> var3 <- var1 + 2 * var2

> var3 <- log(var1)

After generating the new variables, use the assignment mechanism <- to insert the new
variable into the data frame.

In addition to generating vectors of dummy variables, you may transform a vector into
a matrix of dummy indicator variables. For example, see Section ?? to transform a vector
of k unique values (with n observations in the complete vector) into a n× k matrix.

Missing Data

To deal with missing values in some of your variables:

1. You may generate multiply imputed datasets using Amelia (or other programs).

2. You may omit missing values. Zelig models automatically apply list-wise deletion, so
no action is required to run a model. To obtain the total number of observations
or produce other summary statistics using the analytic dataset, you may manually
omit incomplete observations. To do so, first create a data frame containing only the
variables in your analysis. For example:

> new.data <- cbind(data$dep.var, data$var1, data$var2, data$var3)

The cbind() command “column binds” variables into a data frame. (A similar com-
mand rbind() “row binds” observations with the same number of variables into a data
frame.) To omit missing values from this new data frame:

> new.data <- na.omit(new.data)

If you perform na.omit() on the full data frame, you risk deleting observations that
are fully observed in your experimental variables, but missing values in other vari-
ables. Creating a new data frame containing only your experimental variables usually
increases the number of observations retained after na.omit().

11

http://gking.harvard.edu/stats.shtml#amelia

