
1 gamma: Gamma Regression for Continuous, Pos-
itive Dependent Variables

Use the gamma regression model if you have a positive-valued dependent vari-
able such as the number of years a parliamentary cabinet endures, or the seconds
you can stay airborne while jumping. The gamma distribution assumes that all
waiting times are complete by the end of the study (censoring is not allowed).

1.0.1 Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "gamma", data = mydata)
> x.out <- setx(z.out)
> s.out <- sim(z.out, x = x.out, x1 = NULL)

1.0.2 Additional Inputs

In addition to the standard inputs, zelig() takes the following additional op-
tions for gamma regression:

� robust: defaults to FALSE. If TRUE is selected, zelig() computes robust
standard errors via the sandwich package (see [7]). The default type of
robust standard error is heteroskedastic and autocorrelation consistent
(HAC), and assumes that observations are ordered by time index.

In addition, robust may be a list with the following options:

– method: Choose from

* "vcovHAC": (default if robust = TRUE) HAC standard errors.
* "kernHAC": HAC standard errors using the weights given in [1].
* "weave": HAC standard errors using the weights given in [4].

– order.by: defaults to NULL (the observations are chronologically or-
dered as in the original data). Optionally, you may specify a vector
of weights (either as order.by = z, where z exists outside the data
frame; or as order.by = ~z, where z is a variable in the data frame).
The observations are chronologically ordered by the size of z.

– ...: additional options passed to the functions specified in method.
See the sandwich library and [7] for more options.

1.0.3 Example

Attach the sample data:

> data(coalition)

Estimate the model:

> z.out <- zelig(duration ~ fract + numst2, model = "gamma", data = coalition)
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How to cite this model in Zelig:
Kosuke Imai, Gary King, and Olivia Lau. 2012.
"gamma: Gamma Regression for Continuous, Positive Dependent Variables"
in Kosuke Imai, Gary King, and Olivia Lau, "Zelig: Everyone's Statistical Software,"
http://gking.harvard.edu/zelig

View the regression output:

> summary(z.out)

Call:
glm(formula = duration ~ fract + numst2, family = Function, data = Data.frame,

model = FALSE)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.2510 -0.9112 -0.2278 0.4132 1.5360

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.296e-02 1.329e-02 -0.975 0.33016
fract 1.149e-04 1.723e-05 6.668 1.19e-10 ***
numst2 -1.739e-02 5.881e-03 -2.957 0.00335 **
---
Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

(Dispersion parameter for Gamma family taken to be 0.6291004)

Null deviance: 300.74 on 313 degrees of freedom
Residual deviance: 272.19 on 311 degrees of freedom
AIC: 2428.1

Number of Fisher Scoring iterations: 6

Set the baseline values (with the ruling coalition in the minority) and the alter-
native values (with the ruling coalition in the majority) for X:

> x.low <- setx(z.out, numst2 = 0)

> x.high <- setx(z.out, numst2 = 1)

Simulate expected values (qi$ev) and first differences (qi$fd):

> s.out <- sim(z.out, x = x.low, x1 = x.high)

> summary(s.out)

Model: gamma
Number of simulations: 1000
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Values of X
(Intercept) fract numst2

[1,] 1 718.8121 0
attr(,"assign")
[1] 0 1 2

Values of X1
(Intercept) fract numst2

[1,] 1 718.8121 1
attr(,"assign")
[1] 0 1 2

Expected Values: E(Y|X)
mean sd 50% 2.5% 97.5%

14.444 1.11 14.385 12.516 16.878

Expected Values (for X1): E(Y|X1)
mean sd 50% 2.5% 97.5%
19.23 1.141 19.158 17.192 21.581

Predicted Values: Y|X
mean sd 50% 2.5% 97.5%

13.796 12.195 9.89 0.603 44.969

Predicted Values: Y|X1
mean sd 50% 2.5% 97.5%

20.197 17.524 15.121 1.063 67.238

First Differences: E(Y|X1) - E(Y|X)
mean sd 50% 2.5% 97.5%
4.786 1.614 4.799 1.683 7.981

> plot(s.out)
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1.0.4 Model

� The Gamma distribution with scale parameter α has a stochastic compo-
nent :

Y ∼ Gamma(yi | λi, α)

f(y) =
1

αλi Γλi
yλi−1

i exp−
{yi

α

}
for α, λi, yi > 0.

� The systematic component is given by

λi =
1

xiβ

1.0.5 Quantities of Interest

� The expected values (qi$ev) are simulations of the mean of the stochastic
component given draws of α and β from their posteriors:

E(Y ) = αλi.
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� The predicted values (qi$pr) are draws from the gamma distribution for
each given set of parameters (α, λi).

� If x1 is specified, sim() also returns the differences in the expected values
(qi$fd),

E(Y | x1)− E(Y | x)

.

� In conditional prediction models, the average expected treatment effect
(att.ev) for the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{Yi(ti = 1)− E[Yi(ti = 0)]} ,

where ti is a binary explanatory variable defining the treatment (ti = 1)
and control (ti = 0) groups. Variation in the simulations are due to
uncertainty in simulating E[Yi(ti = 0)], the counterfactual expected value
of Yi for observations in the treatment group, under the assumption that
everything stays the same except that the treatment indicator is switched
to ti = 0.

� In conditional prediction models, the average predicted treatment effect
(att.pr) for the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{
Yi(ti = 1)− ̂Yi(ti = 0)

}
,

where ti is a binary explanatory variable defining the treatment (ti = 1)
and control (ti = 0) groups. Variation in the simulations are due to
uncertainty in simulating ̂Yi(ti = 0), the counterfactual predicted value of
Yi for observations in the treatment group, under the assumption that
everything stays the same except that the treatment indicator is switched
to ti = 0.

1.0.6 Output Values

The output of each Zelig command contains useful information which you may
view. For example, if you run z.out <- zelig(y ~ x, model = "gamma",
data), then you may examine the available information in z.out by using
names(z.out), see the coefficients by using z.out$coefficients, and a de-
fault summary of information through summary(z.out). Other elements avail-
able through the $ operator are listed below.

� From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.
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– residuals: the working residuals in the final iteration of the IWLS
fit.

– fitted.values: the vector of fitted values.
– linear.predictors: the vector of xiβ.
– aic: Akaike’s Information Criterion (minus twice the maximized log-

likelihood plus twice the number of coefficients).
– df.residual: the residual degrees of freedom.
– df.null: the residual degrees of freedom for the null model.
– zelig.data: the input data frame if save.data = TRUE.

� From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated stan-
dard errors, p-values, and t-statistics.

– cov.scaled: a k × k matrix of scaled covariances.
– cov.unscaled: a k × k matrix of unscaled covariances.

� From the sim() output object s.out, you may extract quantities of inter-
est arranged as matrices indexed by simulation × x-observation (for more
than one x-observation). Available quantities are:

– qi$ev: the simulated expected values for the specified values of x.
– qi$pr: the simulated predicted values drawn from a distribution de-

fined by (α, λi).
– qi$fd: the simulated first difference in the expected values for the

specified values in x and x1.
– qi$att.ev: the simulated average expected treatment effect for the

treated from conditional prediction models.
– qi$att.pr: the simulated average predicted treatment effect for the

treated from conditional prediction models.

How to Cite the Gamma Model

Kosuke Imai, Olivia Lau, and Gary King. logit: Logistic Regression for Dichoto-
mous Dependent, 2011

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s
Statistical Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Com-
mon Framework for Statistical Analysis and Development.” Jour-
nal of Computational and Graphical Statistics, Vol. 17, No. 4
(December), pp. 892-913.
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See also

The gamma model is part of the stats package by (author?) [6]. Advanced
users may wish to refer to help(glm) and help(family), as well as [5]. Robust
standard errors are implemented via the sandwich package by (author?) [7].
Sample data are from [3].
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