
CEM: Software for Coarsened Exact Matching∗

Stefano M. Iacus† Gary King‡ Giuseppe Porro§

Version 1.0.103
May 9, 2009

Contents

1 Introduction 2
Overview . 2
Properties . 2
Goal . 3
Algorithm . 3
Measuring Balance . 4

2 Setup 5
2.1 Software Requirements . 5
2.2 Installation . 5
2.3 Loading CEM . 6
2.4 Updating CEM . 6

3 A User’s Guide 6
3.1 Basic Evaluation and Analysis of Unmatched Data 7
3.2 Coarsened Exact Matching . 9

3.2.1 Automated Coarsening . 9
3.2.2 Coarsening by Explicit User Choice 10

3.3 Progressive coarsening . 12
3.4 Restricting the Matching Solution to a k-to-k Match 17
3.5 Estimating the Causal Effect from cem output 19

∗Forthcoming, Journal of Statistical Software
†Department of Economics, Business and Statistics, University of Milan, Via Conservatorio 7, I-20124

Milan, Italy; stefano.iacus@unimi.it
‡Institute for Quantitative Social Science, 1737 Cambridge Street, Harvard University, Cambridge MA

02138; http://GKing.harvard.edu, king@harvard.edu, (617) 495-2027.
§Department of Economics and Statistics, University of Trieste, P.le Europa 1, I-34127 Trieste, Italy;

giuseppe.porro@econ.units.it.

1

http://GKing.harvard.edu

3.6 Matching and Missing Data . 23
3.6.1 Matching on Missingness . 23
3.6.2 Matching Multiply Imputed Data . 25

3.7 Creating paired samples . 28

4 Reference to CEM’s Functions 32
4.1 cem: Coarsened Exact Matching . 33
4.2 att: Example of ATT estimation from CEM output 38
4.3 DW: Dehejia-Wahba dataset . 41
4.4 imbalance: Calculates several imbalance measures 42
4.5 k2k: Reduction to k2k Matching . 44
4.6 L1.meas: Evaluates L1 distance between multidimensional histograms 46
4.7 LL: Lalonde dataset . 48
4.8 LeLonde: Modified Lalonde dataset . 49
4.9 pair: Produces a paired sample out of a CEM match solution 50
4.10 relax.cem: Diagnostic tool for CEM . 52
4.11 shift.cem: Diagnostic tool for CEM . 55

1 Introduction

Overview This program is designed to improve causal inference via a method of matching
that is widely applicable in observational data and easy to understand and use (if you under-
stand how to draw a histogram, you will understand this method). The program implements
the coarsened exact matching (CEM) algorithm, described below. CEM may be used alone
or in combination with any existing matching method. This algorithm, and its statistical
properties, are described in

Stefano M. Iacus, Gary King, and Giuseppe Porro, “Matching for Causal In-
ference Without Balance Checking”, http://gking.harvard.edu/files/abs/

cem-abs.shtml.

Properties Iacus, King and Porro (2008) show that CEM is a monotonoic imbalance
bounding (MIB) matching method — which means both that the maximum imbalance be-
tween the treated and control groups may be chosen by the user ex ante, rather than discov-
ered through the usual laborious process of ex post checking and repeatedly reestimating,
and that adjusting the maximum imbalance on one variable has no effect on the maximum
imbalance of any other.

This paper also shows that CEM bounds through ex ante user choice both the degree
of model dependence and the average treatment effect estimation error, eliminates the need
for a separate procedure to restrict data to common empirical support, meets the congru-
ence principle, is robust to measurement error, works well with multiple imputation and
other methods for missing data, can be completely automated, and is fast computationally

2

http://gking.harvard.edu/files/abs/cem-abs.shtml
http://gking.harvard.edu/files/abs/cem-abs.shtml

even with very large data sets. After preprocessing data with CEM, the analyst may then
use a simple difference in means, or whatever matching method or statistical model they
would have applied to the raw data. CEM also works for multicategory treatments, creating
randomized blocks in experimental designs, and evaluating extreme counterfactuals.

Goal Matching is not a method of estimation; it is a way to preprocess a data set so that
estimation of SATT based on the matched data set will be less “model-dependent” (i.e., less
a function of apparently small and indefensible modeling decisions) than when based on the
original full data set. Matching involves pruning observations that have no close matches
on pre-treatment covariates in both the treated and control groups. The result is typically
less model-dependence, bias, and (by removing heterogeneity) inefficiency (King and Zeng,
2006; Ho et al., 2007; Iacus, King and Porro, 2008). If used for analyzing observational data,
applications of CEM (and all other methods of causal inference) require an assumption of
ignorability (a.k.a. “no omitted variable bias” or “no confounding”).

The specific statistical goal is to estimate some version of a causal effect, such as the
sample average treatment effect on the treated (the “SATT”). Thus, let Yi be the dependent
variable for unit i, Ti be a treatment variable, and Xi be a vector of pre-treatment control
variables. Although CEM works as easily with multicategory treatment variables, we simplify
this introductory description by assuming that Ti is dichotmous and takes on the value 1 for
“treated” units and 0 for “control” units. Then define the treatment effect for treated units
as the difference between two potential outcomes: TEi = Yi(Ti = 1) − Yi(Ti = 0), where
Yi(Ti = 1) = Yi is always obseved and Yi(Ti = 0), the value that Yi would have taken on if
it were the case that Ti = 0, is always unobserved. Then Yi(Ti = 0) is estimated with Yj

from matched controls (i.e., among units for which Xi ≈ Xj), either directly, Ŷi(Ti = 0) =

Yj(Tj = 0), or via a model, Ŷi(Ti = 0) = ĝ(Xj). Then SATT can be computed as a simple
average: SATT = 1

nT

∑
i∈{Ti=1} TEi.

Algorithm The CEM algorithm then involves three steps:

1. Temporarily coarsen each control variable in X as much as you are willing, for the
purposes of matching. For example, years of education might be coarsened into grade
school, middle school, high school, college, graduate school. Most researchers are
intimately familiar with the concept and practice of coarsening, as it is widely used in
applied data analyses in many fields, although unlike its present use coarsening for data
analysis involves a permanent removal of information from the analysis and ultimate
estimates.

2. Sort all units into strata, each of which has the same values of the coarsened X.

3. Prune from the data set the units in any stratum that do not include at least one
treated and one control unit.

Following these three steps, the researcher can apply any method to the matched data
that they might have to the raw data to estimate the causal effect, with the addition of a

3

weight that equalizes the number of treated and control units within each stratum. Thus,
any existing method of matching may be used within CEM strata to further prune the data
in other ways, in which case the combined approach still inherits all of CEM’s properties.
Whether or not another method of matching is applied, one must compute the causal effect,
either by a (weighted) difference in means in Y among the treated and control units, or with
the application of a statistical model.

If the coarsened bins are set to zero width, then CEM returns the exact matching solution,
in which case model dependence will be eliminated (other than the ignorability assumption),
but too few observations may be left. If instead the coarsened bins are set too wide, then
few observations will be discarded, but differences within the large strata must be spanned
with a statistical model, in which case model dependence may be an issue.

What if the level of coarsening is set as large as the researcher finds reasonable, but the
number of observations is still too small? This of course may happen with a single continuous
covariate with little or no coarsening or due to higher order interactions among a large set of
discrete covariates. We offer below a “progressive coarsening” procedure that may help you
rethink some of your coarsening choices by indicating how many more observations you would
recover by loosening up the coarsening level for each variable. But if the remaining sample
is still too small, the only possibilites involve collecting more data; setting the coarsening
level artificially large and relying on theory to rule out some of the model dependence; or
living with the model dependence and increasing the uncertainty with which you draw your
inferences and represent your conclusions. To be clear, in this situation, you are in a bind
and no method of matching or analysis is likely to save you. Statistics of course is not magic
and can only get you so far given limited information. When in this situation, it is best to
recognize the limits of your data relative to the question you are asking, and decide whether
to devote whatever resources at your disposal to collecting more data, developing better
theory, dealing with the uncertainty, or choosing a different research project.

Measuring Balance Although CEM is MIB, the actual degree of imbalance achieved in
the matched sample may be lower than the chosen maximum, and so we also introduce a
simple and comprehensive multivariate imbalance measure (Iacus, King and Porro, 2008).
The measure is based on the L1 difference between the multidimensional histogram of all
pretreatment covariates in the treated group and that in the control group. To do this,
we first choose the number of bins for each continuous variable via standard automated
univariate histogram methods and with categorical variables left as is. These bin sizes must
be defined separately from and prior to the coarsening levels chosen for CEM. Although
this initial choice poses all the usual issues and potential problems when choosing bins in
drawing histograms, we use it only as a fixed reference to evaluate pre and post matching
imbalance. Our functions compute these bin sizes automatically using automated histogram
methods (and with smaller bins than would typically be chosen in running CEM), or they
can optionally be set by the user, so long as this level is fixed through all subseqent matching.
Then, we cross-tabulate the discretized variables as X1×· · ·×Xk for the treated and control
groups separately, and record the k-dimensional relative frequencies for the treated f`1···`k

4

and control g`1···`k
units. Finally, our measure of imbalance is the absolute difference over all

the cell values:

L1(f, g) =
1

2

∑
`1···`k

|f`1···`k
− g`1···`k

| (1)

and where the summation is over all cells of the multivariate histogram, but is feasible to
compute because it contains at most n nonzero terms. The L1 measure1 varies in [0, 1].
Perfect (up to discretization) global balance result in L1 = 0, and L1 = 1 indicates complete
separation of the multimensional histograms. Any value in the interval (0, 1) indicates the
amount of difference between k-dimensional frequencies of the two groups.

CEM also offers several other measures of imbalance such as the global difference in means
and the difference in means within the strata that are defined by every matching method.

2 Setup

2.1 Software Requirements

CEM works in conjunction with the R Project for Statistical Computing, and will run on any
platform where R is installed (Windows, Linux, or Mac). R is available free for download at
the Comprehensive R Archive Network (CRAN) at http://cran.r-project.org/. CEM
has been tested on the most recent version of R.

CEM may be run by installing the program directly, as indicated below, or by using the
alternative interface to CEM provided by MatchIt (http://gking.harvard.edu/matchit,
(Ho et al., Forthcoming)). Using CEM directly is faster. The MatchIt interface is easier
for some applications and works seemlessly with Zelig (http://gking.harvard.edu/zelig)
for estimating causal effects after matching, but presently only offers a subset of features
of the R version. A Stata verison of CEM is also available at the CEM web site, http:
//gking.harvard.edu/cem.

2.2 Installation

To install cem, type at the R command prompt,

> install.packages("cem")

and CEM will install itself onto your system automatically from CRAN. You may alterna-
tively load the beta test version as

> install.packages("cem",repos="http://gking.harvard.edu")

1Prior to version 1.0.90 of the cem package the L1 measure did not include the factor 1
2 .

5

http://cran.r-project.org/
http://gking.harvard.edu/matchit
http://gking.harvard.edu/zelig
http://gking.harvard.edu/cem
http://gking.harvard.edu/cem

2.3 Loading CEM

You need to install CEM only once, but you must load it prior to each use. Do this at the
R prompt:

> library(cem)

2.4 Updating CEM

We recommend that you periodically update CEM at the R prompt by typing:

> update.packages()

which will update all the libraries including CEM and load the new version of the package
with

> library(cem)

3 A User’s Guide

We show here how to use CEM through a simple running example: the National Supported
Work (NSW) Demonstration data, also known as the Lalonde data set (Lalonde, 1986).
This program provided training to selected individuals for 12-18 months and help finding
a job in the hopes of increasing their’ earnings. The treatment variable, treated, is 1 for
participants (the treatment group) and 0 for nonparticipants (the control group). The key
outcome variable is earnings in 1978 (re78).

Since participation in the program was not assigned strictly at random, we must control
for a set of pretreatment variables by the CEM algorithm. These pre-treatment variables
include age (age), years of education (education), marital status (married), lack of a high
school diploma (nodegree), race (black, hispanic), indicator variables for unemployment in
1974 (u74) and 1975 (u75), and real earnings in 1974 (re74) and 1975 (re75). Some of these
are dichotomous (married, nodegree, black, hispanic, u74, u75), some are categorical
(age and education), and the earnings variables are continuous and highly skewed with
point masses at zero. We modify these data by adding a (fictitious) variable to illustrate
discrete responses called q1, the answer to a survey question asking before assignment for
an opinion about this job training program, with possible responses strongly agree, agree,
neutral, strongly disagree, disagree, and no opinion; note that the last category is not on the
same ordered scale as the other responses. Ten percent of the observations have missing data
(added randomly by us to illustrate how CEM deals with missingness). We call this new
data set the LeLonde (intentionally misspelling Lalonde); the original, unmodified Lalonde
(1986) data are contained in data set LL.

6

3.1 Basic Evaluation and Analysis of Unmatched Data

We begin with a naive estimate of SATT — the simple difference in means — which would
be useful only if the in-sample distribution of pre-treatment covariates were the same in the
treatment and control groups:

> require(cem)

How to use CEM? Type vignette("cem")

> data(LeLonde)

We remove missing data from the the data set before starting the analysis (we show better
procedures for dealing with missing data in Section 3.6).

> Le <- data.frame(na.omit(LeLonde))

and then compute the size of the treated and control groups:

> tr <- which(Le$treated == 1)

> ct <- which(Le$treated == 0)

> ntr <- length(tr)

> nct <- length(ct)

Thus, the data include 258 treated units and 392 control units. The (unadjusted and therefore
likely biased) difference in means is then:

> mean(Le$re78[tr]) - mean(Le$re78[ct])

[1] 759

Because the variable treated was not randomly assigned, the pre-treatment covariates
differ between the treated and control groups. To see this, we focus on these pre-treatment
covariates:

> vars <- c("age", "education", "black", "married", "nodegree",

+ "re74", "re75", "hispanic", "u74", "u75", "q1")

The overall imbalance is given by the L1 statistic:
We compute L1 statistic, as well as several unidimensional measures of imbalance via our

imbalance function. In our running example:

> imbalance(group = Le$treated, data = Le[vars])

7

Multivariate Imbalance Measure: L1=0.902

Percentage of local common support: LCS=9.1%

Univariate Imbalance Measures:

statistic type L1 min 25% 50% 75% max

age -0.252373 (diff) 5.102e-03 0 0 0.0 -1.0 -6.0

education 0.153635 (diff) 8.464e-02 1 0 1.0 1.0 1.0

black -0.010323 (diff) 1.032e-02 0 0 0.0 0.0 0.0

married -0.009551 (diff) 9.551e-03 0 0 0.0 0.0 0.0

nodegree -0.081217 (diff) 8.122e-02 0 -1 0.0 0.0 0.0

re74 -18.160447 (diff) 5.551e-17 0 0 284.1 806.3 -2139.0

re75 101.501762 (diff) 5.551e-17 0 0 485.6 1238.4 490.4

hispanic -0.010145 (diff) 1.014e-02 0 0 0.0 0.0 0.0

u74 -0.045582 (diff) 4.558e-02 0 0 0.0 0.0 0.0

u75 -0.065555 (diff) 6.556e-02 0 0 0.0 0.0 0.0

q1 7.494021 (Chi2) 1.067e-01 NA NA NA NA NA

Only the overall L1 statistic measure includes imbalance with respect to the joint distri-
bution, including all interactions, of the covariates; in the case of our example, L1 =0.902.
The unidimensional measures in the table are all computed for each variable separately.

The first column in the table of unidimensional measures, labeled statistic, reports the
difference in means for numerical variables (indicated by the second column, type, reporting
(diff)) or a chi-square difference for categorical variables (when the second column reports
(Chi2)). The second column, labeled L1, reports the Lj

1 measure, which is L1 computed for
the j-th variable separately (which of course does not include interactions). The remaining
columns in the table report the difference in the empirical quantile of the distributions of the
two groups for the 0th (min), 25th, 50th, 75th, and 100th (max) percentiles for each variable.
When the variable type is Chi2, the only variable-by-variable measure that is defined in this
table is Lj

1; others are reported missing.
This particular table shows that variables re74 and re75 are imbalanced in the raw data

in many ways and variable age is balanced in means but not in the quantiles of the two
distributions. This table also illustrates the point that balancing only the means between
the treated and control groups does not necessarily guarantee balance in the rest of the
distribution. Most important, of course, is the overall L1 measure, since even if the marginal
distribution of every variable is perfectly balanced, the joint distribution can still be highly
imbalanced.

As an aside, we note that for convenience that the function imbalance allows you to drop
some variables before computation:

todrop <- c("treated", "re78")

imbalance(group=Le$treated, data=Le, drop=todrop)

8

3.2 Coarsened Exact Matching

We now apply the coarsened exact matching algorithm by calling the function cem. The
CEM algorithm performs exact matching on coarsened data to determine matches and then
passes on the uncoarsened data from observations that were matched to estimate the causal
effect. Exact matching works by first sorting all the observations into strata, each of which
has identical values for all the coarsened pre-treatment covariates, and then discarding all
observations within any stratum that does not have at least one observation for each unique
value of the treatment variable.

To run this algorithm, we must choose a type of coarsening for each covariate. We show
how this is done this via a fully automated procedures in Section 3.2.1. Then we show how
to use explicit prior knowledge to choose the coarsening in Section 3.2.2, which is normally
preferable when feasible.

In CEM, the treatment variable may be dichotomous or mutichotomous. Alternatively,
cem may be used for randomized block experiments without specifying a treatment variable;
in this case no strata are deleted and the treatment variable is (randomly) assigned to units
within each strata to ensure that each has at least one observation assigned each value of
the treated variable.

3.2.1 Automated Coarsening

In our running example we have a dichotomous treatment variable. In the following code,
we match on all variables but re78, which is the outcome variable and so should never be
included. Hence we proceed specifying "re78" in argument drop:

> mat <- cem(treatment = "treated", data = Le, drop = "re78")

The output object mat contains useful information about the match, including a (small)
table about the number of observations in total, matched, and unmatched, as well as the
results of a call to the imbalance function for information about the quality of the matched
data (unless eval.imbalance is set to FALSE). Since cem bounds the imbalance ex ante, the
most important information in mat is the number of observations matched. But the results
also give the imbalance in the matched data using the same measures as that in the original
data described in Section 3.1. Thus,

> mat

G0 G1

All 392 258

Matched 95 84

Unmatched 297 174

Multivariate Imbalance Measure: L1=0.605

9

Percentage of local common support: LCS=30.5%

Univariate Imbalance Measures:

statistic type L1 min 25% 50% 75% max

age 9.405e-02 (diff) 0.000e+00 0 0 1 0.0 0.0

education -2.222e-02 (diff) 2.222e-02 0 0 0 0.0 0.0

black 1.110e-16 (diff) 0.000e+00 0 0 0 0.0 0.0

married 0.000e+00 (diff) 0.000e+00 0 0 0 0.0 0.0

nodegree 0.000e+00 (diff) 0.000e+00 0 0 0 0.0 0.0

re74 1.496e+02 (diff) 0.000e+00 0 0 0 463.3 889.5

re75 1.588e+02 (diff) 0.000e+00 0 0 0 843.7 -640.9

hispanic 0.000e+00 (diff) 0.000e+00 0 0 0 0.0 0.0

u74 0.000e+00 (diff) 0.000e+00 0 0 0 0.0 0.0

u75 0.000e+00 (diff) 0.000e+00 0 0 0 0.0 0.0

q1 2.083e+00 (Chi2) 1.388e-17 NA NA NA NA NA

We can see from these results the number of observations matched and thus retained,
as well as those which were pruned because they were not comparable. By comparing the
imbalance results to the original imbalance table given in the previous section, we can see
that a good match can produce a substantial reduction in imbalance, not only in the means,
but also in the marginal and joint distributions of the data.

The function cem also generates weights for use in the evaluation of imbalance measures
and estimates of the causal effect (stored in mat$w).

3.2.2 Coarsening by Explicit User Choice

The power and simplicity of CEM comes from choosing the coarsening yourself rather than
using the automated algorithm as in the previous section. Choosing the coarsening enables
you to set the maximum level of imbalance ex ante, which is a direct function of the coarsening
you choose. By controlling the coarsening, you also put an explicit bound on the degree of
model dependence and the SATT estimation error.

Fortunately, the coarsening is a fundamentally substantive act, almost synonymous with
the measurement of the original variables. In other words, if you know something about the
data you are analyzing, you almost surely have enough information to choose the coarsening.
(And if you don’t know something about the data, you might ask why you are analyzing it
in the first place!)

In general, we want to set the coarsening for each variable so that substantively indis-
tinguishable values are grouped and assigned the same numerical value. Groups may be of
different sizes if appropriate. Recall that any coarsening during CEM is used only for match-
ing; the original values of the variables are passed on to the analysis stage for all matched
observations.

The function cem treats categorical and numerical variables differently.

10

For categorical variables, we use the grouping option. For example, variable q1 has the
following levels

> levels(Le$q1)

[1] "agree" "disagree" "neutral"

[4] "no opinion" "strongly agree" "strongly disagree"

Notice that the levels are not ordered in the original data set. One can possibly tranform the
variable q1 from factor to ordered factor using the command ordered in R or may want to
group them in three groups as follows:

> q1.grp <- list(c("strongly agree", "agree"), c("neutral", "no opinion"),

+ c("strongly disagree", "disagree"))

For numerical variables, we use the cutpoints option. Thus, for example, in the US ed-
ucational system, the following discretization of years of education corresponds to different
levels of school

Grade school 0–6
Middle school 7–8
High school 9–12
College 13–16
Graduate school >16

Using these natural breaks in the data to create the coarsening is generally a good approach
and usually better than caliper matching in this context, as it would disregard these mean-
ingful breaks. (The venerable technique of caliper matching of course may be useful for
certain other types of data.) Because in our data, no respondents fall in the last category,

> table(Le$education)

3 4 5 6 7 8 9 10 11 12 13 14 15

1 5 4 6 12 55 106 146 173 113 19 9 1

we define the cutpoints as:

> educut <- c(0, 6.5, 8.5, 12.5, 17)

and run cem adding only the grouping and cutpoints options, leaving the rest unchanged:

> mat1 <- cem(treatment = "treated", data = Le, drop = "re78",

+ cutpoints = list(education = educut), grouping = list(q1.grp))

> mat1

11

G0 G1

All 392 258

Matched 137 91

Unmatched 255 167

Multivariate Imbalance Measure: L1=0.713

Percentage of local common support: LCS=28.1%

Univariate Imbalance Measures:

statistic type L1 min 25% 50% 75% max

age 1.809e-01 (diff) 0.000e+00 0 0 1 0.0 0.0

education 5.716e-02 (diff) 5.754e-02 0 1 0 0.0 -2.0

black 0.000e+00 (diff) 6.245e-17 0 0 0 0.0 0.0

married 0.000e+00 (diff) 1.145e-16 0 0 0 0.0 0.0

nodegree 0.000e+00 (diff) 6.939e-17 0 0 0 0.0 0.0

re74 1.022e+02 (diff) 0.000e+00 0 0 0 463.3 889.5

re75 1.161e+02 (diff) 0.000e+00 0 0 0 843.7 -640.9

hispanic -6.939e-18 (diff) 5.898e-17 0 0 0 0.0 0.0

u74 0.000e+00 (diff) 2.776e-17 0 0 0 0.0 0.0

u75 -1.110e-16 (diff) 1.110e-16 0 0 0 0.0 0.0

q1 2.064e+00 (Chi2) 7.633e-17 NA NA NA NA NA

As we can see, this matching solution differs from that resulting from our automated approach
in the previous section. For comparison, the automatic cutpoints produced by cem are stored
in the output object in slot breaks. So, for example, our automated coarsening produced:

> mat$breaks$education

[1] 3.0 4.2 5.4 6.6 7.8 9.0 10.2 11.4 12.6 13.8 15.0

whereas we can recover our personal choice of cutpoints as

> mat1$breaks$education

[1] 0.0 6.5 8.5 12.5 17.0

3.3 Progressive coarsening

Although the maximum imbalance is fixed ex ante by the user’s coarsening choices, the
number of observations matched is determined as a consequence of the matching procedure.
If you are dissatisfied with the number of observations available after matching, and you feel
that it is substantively appropriate to coarsen further, then just increase the coarsening (by

12

using fewer cutpoints). The result will be additional matches and of course a concommitant
increase in the maximum possible imbalance between the treated and control groups. This
is easy with CEM because CEM is a monotonic imbalance bounding (MIB) method, which
means that increasing the imbalance on one variable (by widening the coarsened bin sizes)
will not change the maximum imbalance on any other variable. MIB thus enables you to
tinker with the solution one variable at a time to quickly produce a satisfactory result, if one
is feasible.

If, however, you feel that additional coarsening is not appropriate, than too few obser-
ations may indicate that your data contains insufficient information to estimate the causal
effects of interest without model dependence; in that situation, you either give up or will
have to attempt adjusting for the pre-treatment covariates via modeling assumptions.

Suppose, instead, that you are unsure whether to coarsen further or how much to coarsen,
and are willing to entertain alternative matching solutions. We offer here an automated way
to compute these solutions. The idea is to relax the initial cem solution selectively and
automatically, to prune equivalent solutions, and to present them in a convenient manner
so that users can ascertain where the difficulties in matching in these data can be found
and what choices would produce which outcomes in terms of the numbers of observations
matched.

For categorical variables, the algorithm considers the numerical values associated to each
level of the variable. In R the numerical values associated to the levels go from 1 to the
number of levels, say k. The coarsening occurs by partitioning the interval [1, k] into intervals
of growing size starting from, say, ε = 1. So in all cases, coarsening occurs by grouping
adjacent levels from “left” to “right”. This is of course not completely appropriate for pure
unordered categorical variables, but to treat them in a proper way additional combinatorics
would be necessary. The progressive coarsening is instead intended as an instrument which
gives a feeling on which variable is more likely to prevent matching for a given data set.

We start by illustrating what happens when we relax a CEM solution “by hand”. The
following three runs show the effect on the matching solution (in terms of the number of
observations and imbalance) when the coarsening for one variable (age) is relaxed from 10
to 6 to 3 bins. As can be seen, fewer cutpoints (which means larger bins) produces more
matched units and high maximum (and in this case actual) imbalance:

> cem("treated", Le, cutpoints = list(age = 10), drop = "re78",

+ grouping = q1.grp)

G0 G1

All 392 258

Matched 87 77

Unmatched 305 181

Multivariate Imbalance Measure: L1=0.644

Percentage of local common support: LCS=27.5%

13

Univariate Imbalance Measures:

statistic type L1 min 25% 50% 75% max

age 1.405e-01 (diff) 0.000e+00 0 0 1.0 -1.0 0.0

education -4.762e-03 (diff) 4.762e-03 0 0 0.0 0.0 0.0

black 0.000e+00 (diff) 0.000e+00 0 0 0.0 0.0 0.0

married 0.000e+00 (diff) 5.551e-17 0 0 0.0 0.0 0.0

nodegree 1.110e-16 (diff) 0.000e+00 0 0 0.0 0.0 0.0

re74 1.453e+02 (diff) 0.000e+00 0 0 378.5 385.3 889.5

re75 7.227e+01 (diff) 0.000e+00 0 0 275.9 695.1 -640.9

hispanic 0.000e+00 (diff) 5.551e-17 0 0 0.0 0.0 0.0

u74 5.551e-17 (diff) 2.776e-17 0 0 0.0 0.0 0.0

u75 0.000e+00 (diff) 0.000e+00 0 0 0.0 0.0 0.0

q1 3.611e+00 (Chi2) 0.000e+00 NA NA NA NA NA

> cem("treated", Le, cutpoints = list(age = 6), drop = "re78",

+ grouping = q1.grp)

G0 G1

All 392 258

Matched 131 101

Unmatched 261 157

Multivariate Imbalance Measure: L1=0.729

Percentage of local common support: LCS=23.9%

Univariate Imbalance Measures:

statistic type L1 min 25% 50% 75% max

age 0.20165 (diff) 0.000e+00 0 0 0.0 0.0 0.0

education -0.02871 (diff) 2.871e-02 0 0 0.0 0.0 0.0

black 0.00000 (diff) 0.000e+00 0 0 0.0 0.0 0.0

married 0.00000 (diff) 0.000e+00 0 0 0.0 0.0 0.0

nodegree 0.00000 (diff) 0.000e+00 0 0 0.0 0.0 0.0

re74 149.25677 (diff) 0.000e+00 0 0 369.3 481.7 889.5

re75 106.52881 (diff) 0.000e+00 0 0 202.6 556.8 -640.9

hispanic 0.00000 (diff) 0.000e+00 0 0 0.0 0.0 0.0

u74 0.00000 (diff) 0.000e+00 0 0 0.0 0.0 0.0

u75 0.00000 (diff) 0.000e+00 0 0 0.0 0.0 0.0

q1 1.25381 (Chi2) 1.388e-17 NA NA NA NA NA

14

> cem("treated", Le, cutpoints = list(age = 3), drop = "re78",

+ grouping = q1.grp)

G0 G1

All 392 258

Matched 173 123

Unmatched 219 135

Multivariate Imbalance Measure: L1=0.783

Percentage of local common support: LCS=19.6%

Univariate Imbalance Measures:

statistic type L1 min 25% 50% 75% max

age -2.923e-01 (diff) 5.551e-17 0 -1 0.0 -1.0 -7.0

education -7.724e-03 (diff) 7.724e-03 0 0 0.0 0.0 0.0

black 0.000e+00 (diff) 6.245e-17 0 0 0.0 0.0 0.0

married 0.000e+00 (diff) 5.898e-17 0 0 0.0 0.0 0.0

nodegree -1.110e-16 (diff) 6.939e-17 0 0 0.0 0.0 0.0

re74 -6.242e+01 (diff) 5.551e-17 0 0 0.0 -570.8 957.1

re75 -9.322e+01 (diff) 5.551e-17 0 0 -228.7 -400.8 640.9

hispanic 0.000e+00 (diff) 5.725e-17 0 0 0.0 0.0 0.0

u74 0.000e+00 (diff) 2.776e-17 0 0 0.0 0.0 0.0

u75 0.000e+00 (diff) 2.776e-17 0 0 0.0 0.0 0.0

q1 1.951e+00 (Chi2) 7.633e-17 NA NA NA NA NA

We automate this progressive coarsening procedure here in the relax.cem function. This
function starts with the output of cem and relaxes variables one (depth=1), two (depth=2),
or three (depth=3) at a time, while optionally keeping unchanged a chosen subset of the
variables which we know well or have important effects on the outcome (fixed). The function
also allows one to specify the minimal number of breaks of each variable (the default limit
being 1). We begin with this example (the argument perc=0.3 is passed to the plot function
and implies that only the solutions with at least 30% of the units are matched)

> tab <- relax.cem(mat, Le, depth = 1, perc = 0.3)

Executing 47 different relaxations

........[20%]....[40%].....[60%].....[80%]....[100%]

After all possible coarsening relaxations are attempted, the function returns a list of
tables, one per group (i.e. treated and control). Each row of the tables contain information
about the number of treated and control units matched, the value of the L1 measure, and

15

● ● ●
●

● ● ● ● ●
● ● ● ● ● ●

●
● ● ● ● ● ●

● ● ● ●
● ● ● ●

●
● ●

●
●

● ● ●

● ●

●

●

●

● ●

●

●

●

Pre−relax: 84 matched (32.6 %)

32.632.933.333.734.134.534.935.335.736.036.436.837.2

39.1

40.3

42.2
43.0

46.1

47.7

50.4

56.6

84858687888990919293949596

101

104

109
111

119

123

130

146

<s
ta

rt>

ed
uc

at
ion

(9
)

no
de

gr
ee

(1
)

ed
uc

at
ion

(8
)

re
74

(5
)

re
74

(6
)

re
74

(7
)

re
74

(8
)

re
74

(9
)

re
75

(5
)

re
75

(6
)

re
75

(7
)

re
75

(8
)

re
75

(9
)

re
74

(4
)
q1

(5
)

re
75

(1
)

re
75

(2
)

re
75

(3
)

re
75

(4
)

his
pa

nic
(1

)

re
74

(3
)

re
74

(1
)

re
74

(2
)

bla
ck

(1
)

ed
uc

at
ion

(6
)

u7
4(

1)

ed
uc

at
ion

(5
)

ed
uc

at
ion

(7
)
q1

(4
)

u7
5(

1)

m
ar

rie
d(

1)

ed
uc

at
ion

(4
)
q1

(3
)

ed
uc

at
ion

(2
)

ag
e(

7)

ag
e(

8)

ag
e(

9)

ag
e(

5)

ag
e(

6)

ed
uc

at
ion

(3
)

ed
uc

at
ion

(1
)

ag
e(

4)
q1

(2
)

ag
e(

3)

ag
e(

2)

ag
e(

1)
q1

(1
)

0.69
0.69

0.69

0.69

0.71
0.71

0.71
0.71

0.71

0.69
0.69

0.69
0.69

0.69
0.71

0.72

0.70
0.70

0.70
0.70

0.71
0.71

0.71
0.71

0.73
0.76

0.71
0.75

0.75
0.76

0.71

0.73
0.76

0.78

0.76

0.76
0.76

0.76

0.77
0.77

0.80

0.81

0.80

0.81
0.82

0.83

0.79

0.85

nu
m

be
r

of
 m

at
ch

ed

%
 m

at
ch

ed

Figure 1: Example of the graphical output of relax.cem.

the type of relaxation made. Each table is the sorted according to the number of treated (or
control) units matched.

The user may want to see the output of tab$G1 or tab$G0 but these tables may be very
long, and so we provide a method plot to view these tables more conveniently. The output
of plot(tab) is plotted in Figure 1 from which it is seen that the most difficult variables
to match are age and education. On the x-axis of the plot the variable and the number of
equally sized bins used for the coarsening are used (color-coded by variable). On the y-axis
on the right is the absolute number of treated units matched, while the left side y-axis reports
the same number in percentages. The numbers below the dots in the graphs represent the L1

measure corresponding to that matching solution. This graph also gives a feeling of the MIB
behaviour of cem. When the tables produced by relax.cem are too large, the plot function,
allows for some reduction like printing only the best matching solutions (in the terms of
number of treated units matched), removing duplicates (i.e. different coarsenings may lead
to the same matching solution), or printing only solution where at least some percentage of
treated units, have been matched, or a combination of these. For more information refer to
the reference manual for the function relax.plot which can be called directly instead of
plot.

Here is one example of use of plot in which we specify that only solutions with at least
60% of the treated units are matched and duplicated solutions are removed. The output can
be seen in Figure 2

> plot(tab, group = "1", perc = 0.35, unique = TRUE)

16

●
●

●
●

●
●

●

●

●

●

●

●

●

●

Pre−relax: 84 matched (32.6 %)

35.335.736.036.436.837.2

39.1

40.3

42.2
43.0

46.1

47.7

50.4

56.6

919293949596

101

104

109
111

119

123

130

146

u7
4(

1)

u7
5(

1)

m
ar

rie
d(

1)
q1

(3
)

ed
uc

at
ion

(2
)

ag
e(

7)

ag
e(

5)

ed
uc

at
ion

(3
)

ed
uc

at
ion

(1
)

ag
e(

4)
q1

(2
)

ag
e(

2)

ag
e(

1)
q1

(1
)

0.71

0.71

0.73

0.78

0.76

0.76

0.77

0.80

0.81

0.80

0.81

0.83

0.79

0.85

nu
m

be
r

of
 m

at
ch

ed

%
 m

at
ch

ed

Figure 2: Example of reduced graphical output of relax.cem.

3.4 Restricting the Matching Solution to a k-to-k Match

By default, CEM uses maximal information, resulting in strata that may include different
numbers of treated and control units. To compensate for the differential strata sizes, cem also
returns weights to be used in subsequent analyses. Although this is generally the best option,
a user with enough data may opt for a k-to-k solution to avoid the slight inconvenience of
needing to use weights.

The function k2k accomplishes this by pruning observations from a cem solution within
each stratum until the solution contains the same number of treated and control units in
all strata. Pruning occurs within a stratum (for which observations are indistuinguishable
to cem proper) by using nearest neighbor selection using a distance function specified by
the user (including euclidean, maximum, manhattan, canberra, binary, or minkowski). By
default method is set to NULL, which means random matching inside cem strata, an option
that may reduce the chance for bias. (For the Minkowski distance the power can be specified
via the argument mpower. For more information on method != NULL, refer to dist help
page.)

Here is an example of this approach. First, by running cem:

> mat <- cem(treatment = "treated", data = Le, drop = "re78")

> mat

G0 G1

All 392 258

17

Matched 95 84

Unmatched 297 174

Multivariate Imbalance Measure: L1=0.605

Percentage of local common support: LCS=30.5%

Univariate Imbalance Measures:

statistic type L1 min 25% 50% 75% max

age 9.405e-02 (diff) 0.000e+00 0 0 1 0.0 0.0

education -2.222e-02 (diff) 2.222e-02 0 0 0 0.0 0.0

black 1.110e-16 (diff) 0.000e+00 0 0 0 0.0 0.0

married 0.000e+00 (diff) 0.000e+00 0 0 0 0.0 0.0

nodegree 0.000e+00 (diff) 0.000e+00 0 0 0 0.0 0.0

re74 1.496e+02 (diff) 0.000e+00 0 0 0 463.3 889.5

re75 1.588e+02 (diff) 0.000e+00 0 0 0 843.7 -640.9

hispanic 0.000e+00 (diff) 0.000e+00 0 0 0 0.0 0.0

u74 0.000e+00 (diff) 0.000e+00 0 0 0 0.0 0.0

u75 0.000e+00 (diff) 0.000e+00 0 0 0 0.0 0.0

q1 2.083e+00 (Chi2) 1.388e-17 NA NA NA NA NA

> mat$k2k

[1] FALSE

and now pruning to a k-to-k solution, using the euclidean distance within CEM strata:

> mat2 <- k2k(mat, Le, "euclidean", 1)

> mat2

G0 G1

All 392 258

Matched 70 70

Unmatched 322 188

Multivariate Imbalance Measure: L1=0.605

Percentage of local common support: LCS=30.5%

Univariate Imbalance Measures:

statistic type L1 min 25% 50% 75% max

age 9.405e-02 (diff) 0.000e+00 0 0 1 0.0 0.0

18

education -2.222e-02 (diff) 2.222e-02 0 0 0 0.0 0.0

black 1.110e-16 (diff) 0.000e+00 0 0 0 0.0 0.0

married 0.000e+00 (diff) 0.000e+00 0 0 0 0.0 0.0

nodegree 0.000e+00 (diff) 0.000e+00 0 0 0 0.0 0.0

re74 1.496e+02 (diff) 0.000e+00 0 0 0 463.3 889.5

re75 1.588e+02 (diff) 0.000e+00 0 0 0 843.7 -640.9

hispanic 0.000e+00 (diff) 0.000e+00 0 0 0 0.0 0.0

u74 0.000e+00 (diff) 0.000e+00 0 0 0 0.0 0.0

u75 0.000e+00 (diff) 0.000e+00 0 0 0 0.0 0.0

q1 2.083e+00 (Chi2) 1.388e-17 NA NA NA NA NA

> mat2$k2k

[1] TRUE

Alternatively, we can produce the same result in one step by adding the k2k=TRUE option to
the original cem call.

3.5 Estimating the Causal Effect from cem output

Using the output from cem, we can estimate SATT via the att function. The simplest
approach requires a weighted difference in means (unless k2k was used, in which case no
weights are required). For convenience, we compute this as a regression of the outcome
variable on a constant and the treatment variable,

> data(LL)

> mat <- cem(treatment = "treated", data = LL, drop = "re78")

> est <- att(mat, re78 ~ treated, data = LL)

> est

G0 G1

All 425 297

Matched 222 163

Unmatched 203 134

Linear regression model on CEM matched data:

SATT point estimate: 550.962564 (p.value=0.368242)

95% conf. interval: [-647.777701, 1749.702830]

where the SATT estimate is the coefficient on the treated variable, in our case 550.96. The
function att allows for R’s standard formula interface and, by default, uses a linear model
to estimate the att using the weights produced by cem.

19

If exact matching (i.e., without coarsening) was chosen this procedure is appropriate as
is. In other situations, with some coarsening, some imbalance remains in the matched data.
The remaining imbalance is strictly bounded by the level of coarsening, which can be seen
by any remaining variation within the coarsened bins. Thus, a reasonable approach in this
common situation is to attempt to adjust for the remaining imbalance via a statistical model.
(Modeling assumptions for models applied to the matched data are much less consequential
than they would otherwise be because CEM is known to strictly bound the level of model
dependence.) To apply a statistical model to control for the remaining imbalance, we use
the formula interface in att. For example:

> est2 <- att(mat, re78 ~ treated + re74, data = LL)

> est2

G0 G1

All 425 297

Matched 222 163

Unmatched 203 134

Linear regression model on CEM matched data:

SATT point estimate: 553.113736 (p.value=0.362760)

95% conf. interval: [-636.606542, 1742.834014]

The user can also specify the option model which accepts one of the following string
arguments

� linear or lm (the default) for linear model, when the treatment effect is supposed to
be homogeneous

> att(mat, re78 ~ treated + re74, data = LL, model = "linear")

G0 G1

All 425 297

Matched 222 163

Unmatched 203 134

Linear regression model on CEM matched data:

SATT point estimate: 553.113736 (p.value=0.362760)

95% conf. interval: [-636.606542, 1742.834014]

� linear-RE or lme for linear model with random effects in cem strata, for non-homogeneous
treatment effect

> att(mat, re78 ~ treated + re74, data = LL, model = "linear-RE")

20

G0 G1

All 425 297

Matched 222 163

Unmatched 203 134

Linear random effect model on CEM matched data:

SATT point estimate: 552.448961 (p.value=0.000000)

95% conf. interval: [364.067068, 740.830853]

� logistic or logit for dichotomous response variable2, for homogeneous treatment
effect.

� forest or rf for random forest model, also for non-homogeneous treatment effect. It
accepts continuous, dichotomous or counting outcomes.

> att(mat, re78 ~ treated + re74, data = LL, model = "forest")

G0 G1

All 425 297

Matched 222 163

Unmatched 203 134

Random forest model on CEM matched data:

SATT point estimate: 527.170094 (p.value=0.557660)

95% conf. interval: [-1235.065607, 2289.405794]

All the above models run on the CEM matched subsamples, so the quantity of interest may
change in case of non-homogeneous treatment effect. The option extrapolate, if set TRUE,
extrapolates each of the above models also to the set of treated units not matched. In this
case the quantity of interest is kept fixed but the estimation is more model dependent.

> att(mat, re78 ~ treated + re74, data = LL, model = "linear",

+ extra = TRUE)

G0 G1

All 425 297

Matched 222 163

Unmatched 203 134

Linear regression model with extrapolation:

2We do not provide an example here, model the syntax is the same for the other models.

21

SATT point estimate: 674.337762 (p.value=0.347286)

95% conf. interval: [-236.091964, 1584.767489]

> att(mat, re78 ~ treated + re74, data = LL, model = "linear-RE",

+ extra = TRUE)

G0 G1

All 425 297

Matched 222 163

Unmatched 203 134

Linear random effect model with extrapolation:

SATT point estimate: 902.087484 (p.value=0.000000)

95% conf. interval: [816.567245, 987.607724]

> att(mat, re78 ~ treated + re74, data = LL, model = "rf", extra = TRUE)

G0 G1

All 425 297

Matched 222 163

Unmatched 203 134

Random forest model with extrapolation:

SATT point estimate: 54.844433 (p.value=0.933524)

95% conf. interval: [-1233.861927, 1343.550792]

As Figure 3 shows, it is also possible to plot the results of the SATT estimation as follows

> est3 <- att(mat, re78 ~ treated + re74, data = LL)

> est3

G0 G1

All 425 297

Matched 222 163

Unmatched 203 134

Linear regression model on CEM matched data:

SATT point estimate: 553.113736 (p.value=0.362760)

95% conf. interval: [-636.606542, 1742.834014]

> plot(est3, mat, LL, vars = c("education", "age", "re74", "re75"))

For more information, see the reference manual entry for att.

22

Linear regression model on CEM matched data

Treatment Effect

C
E

M
 S

tr
at

a

2539620171318285132251331184173153106145225108183154572142761863073511757618132014059121901962113041852931802122982911701881573289122834018219310419726418715611811119435215087345549734818988158178

−5000 0 5000 10000 15000 20000

● ● ●●●● ●●●● ●●●●●●●
●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●● ●●●● ● ● ●●● ●●● ●●●● ● ● ● ● ●

negative

education

age

re74

re75

Min Max

zero

education

age

re74

re75

Min Max

positive

education

age

re74

re75

Min Max

Figure 3: Example of a plot of the output of att. The top panel gives observation-level
causal effect estimates sorted in numerical order and colored in ranges – negative (in blue),
not significantly different from zero (black), or positive (red). For each range of effects,
the bottom panel gives parallel plots; each line in a parallel plot represents the (covariate)
characteristics of a single observation.

3.6 Matching and Missing Data

Almost all previous methods of matching assume the absence of any missing values. In
contrast, CEM offers two valid approaches to dealing with missing values (item nonresponse).
In the first, where we treat missing values as one of the values of the variables, is appropriate
when “NA” is a valid value that is not really missing (such as when “no opinion” really means
no opinion); see Section 3.6.1. The other is a special procedure to allow for multiply imputed
data in CEM, as described in Section 3.6.2.

3.6.1 Matching on Missingness

In the next example, we use our original LeLonde data with missing values and we compare
the result with Le from which we dropped the NA values. For comparability, we use the same
cutpoints we used in Section 3.2 on the Le data. The cutpoints are contained in mat$breaks

23

> mat3 <- cem("treated", LeLonde, drop = "re78", cutpoints = mat$breaks,

+ grouping = list(q1 = q1.grp))

Missing values exist in the data!

> mat3

G0 G1

All 425 297

Matched 134 101

Unmatched 291 196

Multivariate Imbalance Measure: L1=0.723

Percentage of local common support: LCS=27.5%

Univariate Imbalance Measures:

statistic type L1 min 25% 50% 75% max

age 1.893e-01 (diff) 0.000e+00 0 0 0 0 0.0

education 0.000e+00 (diff) 0.000e+00 0 0 0 0 0.0

black 0.000e+00 (diff) 5.551e-17 0 0 0 0 0.0

married 0.000e+00 (diff) 0.000e+00 0 0 0 0 0.0

nodegree 1.110e-16 (diff) 0.000e+00 0 0 0 0 0.0

re74 4.563e+01 (diff) 0.000e+00 0 0 0 543 889.5

re75 8.120e+01 (diff) 0.000e+00 0 0 0 816 -640.9

hispanic 0.000e+00 (diff) 0.000e+00 0 0 0 0 0.0

u74 0.000e+00 (diff) 2.776e-17 0 0 0 0 0.0

u75 0.000e+00 (diff) 0.000e+00 0 0 0 0 0.0

q1 3.822e+00 (Chi2) 7.084e-02 NA NA NA NA NA

and we compare the above with the solution obtained by dropping the observations with
missing data

> mat4 <- cem("treated", Le, drop = "re78", cutpoints = mat$breaks,

+ grouping = list(q1 = q1.grp))

> mat4

G0 G1

All 392 258

Matched 132 100

Unmatched 260 158

24

Multivariate Imbalance Measure: L1=0.734

Percentage of local common support: LCS=27.5%

Univariate Imbalance Measures:

statistic type L1 min 25% 50% 75% max

age 1.919e-01 (diff) 0.000e+00 0 0 0 0 0.0

education 1.776e-15 (diff) 0.000e+00 0 0 0 0 0.0

black 0.000e+00 (diff) 3.469e-18 0 0 0 0 0.0

married 0.000e+00 (diff) 0.000e+00 0 0 0 0 0.0

nodegree 1.110e-16 (diff) 0.000e+00 0 0 0 0 0.0

re74 4.583e+01 (diff) 0.000e+00 0 0 0 543 889.5

re75 8.287e+01 (diff) 0.000e+00 0 0 0 816 -640.9

hispanic 0.000e+00 (diff) 1.735e-18 0 0 0 0 0.0

u74 0.000e+00 (diff) 0.000e+00 0 0 0 0 0.0

u75 0.000e+00 (diff) 2.776e-17 0 0 0 0 0.0

q1 3.698e+00 (Chi2) 7.279e-02 NA NA NA NA NA

and, as expected, the two solutions differ somewhat. The gain (in terms of number of
matched units) decreases as the number of covariates increases.

3.6.2 Matching Multiply Imputed Data

Consider a data set to be matched, some of which is missing. One approach to analyzing
data with missing values is multiple imputation, which involves creating m (usually about
m = 5) data sets, each of which is the same as the original except that the missing values
have been imputed in each. Uncertainty in the values of the missing cells is represented by
variation in the imputations across the different imputed data sets (King et al., 2001).

As an example we take the original LeLonde data with missing values

> summary(LeLonde)

treated age education black married

Min. :0.000 Min. :17.0 Min. : 3.0 Min. :0.0 Min. :0.000

1st Qu.:0.000 1st Qu.:19.0 1st Qu.: 9.0 1st Qu.:1.0 1st Qu.:0.000

Median :0.000 Median :23.0 Median :10.0 Median :1.0 Median :0.000

Mean :0.411 Mean :24.5 Mean :10.3 Mean :0.8 Mean :0.163

3rd Qu.:1.000 3rd Qu.:27.0 3rd Qu.:11.0 3rd Qu.:1.0 3rd Qu.:0.000

Max. :1.000 Max. :55.0 Max. :16.0 Max. :1.0 Max. :1.000

NA's : 8.0 NA's : 8.0 NA's :1.0 NA's :9.000

nodegree re74 re75 re78

Min. :0.000 Min. : 0 Min. : 0 Min. : 0

1st Qu.:1.000 1st Qu.: 0 1st Qu.: 0 1st Qu.: 0

Median :1.000 Median : 824 Median : 941 Median : 4033

25

Mean :0.778 Mean : 3662 Mean : 3051 Mean : 5486

3rd Qu.:1.000 3rd Qu.: 5237 3rd Qu.: 3993 3rd Qu.: 8813

Max. :1.000 Max. :39571 Max. :37432 Max. :60308

NA's :5.000 NA's : 8 NA's : 4 NA's : 7

hispanic u74 u75 q1

Min. : 0.000 Min. :0.000 Min. :0.000 agree :111

1st Qu.: 0.000 1st Qu.:0.000 1st Qu.:0.000 disagree :121

Median : 0.000 Median :0.000 Median :0.000 neutral :129

Mean : 0.104 Mean :0.453 Mean :0.402 no opinion :117

3rd Qu.: 0.000 3rd Qu.:1.000 3rd Qu.:1.000 strongly agree :121

Max. : 1.000 Max. :1.000 Max. :1.000 strongly disagree:118

NA's :11.000 NA's :3.000 NA's :3.000 NA's : 5

Now we use Amelia package (Honaker, King and Blackwell, 2006) to create multiply imputed
data sets:

> require(Amelia)

##

Amelia II: Multiple Imputation

(Version 1.2-3, built: 2009-05-04)

Copyright (C) 2005-2009 James Honaker, Gary King and Matthew Blackwell

Refer to http://gking.harvard.edu/amelia/ for more information

##

> set.seed(123)

> imputed <- amelia(LeLonde, noms = c("black", "hispanic", "treated",

+ "married", "nodegree", "u74", "u75", "q1"))

-- Imputation 1 --

1 2 3

-- Imputation 2 --

1 2 3 4

-- Imputation 3 --

1 2 3

-- Imputation 4 --

1 2 3 4

26

-- Imputation 5 --

1 2 3

> imputed <- imputed$imputations[1:5]

Now imputed contains a list of 5 multiply imputed versions of LeLonde. We pass this list
to the cem function in the argument datalist and cem produces a set of multiply imputed
solutions, as usual with the original uncoarsened values of the variables, but now assigning
each multiply imputed observation to the strata where it falls most frequently. The output
of cem is a list of cem.match solutions (named match1, match2,. . . , match5). (Be sure to
also name the original data frame in option data or cem will merely run the basic algorithm
five separate times on each of the input data sets, a procedure that can be useful for batch
processing of data to be matched, but is not recommended for multiply imputed data sets
since the strata will not be the same across the data sets.) For example:

> mat2 <- cem("treated", datalist = imputed, drop = "re78", data = LeLonde,

+ grouping = list(q1 = q1.grp))

> mat2

G0 G1

All 425 297

Matched 132 98

Unmatched 293 199

Multivariate Imbalance Measure: L1=0.703

Percentage of local common support: LCS=28.3%

Univariate Imbalance Measures:

statistic type L1 min 25% 50% 75% max

age -0.141910 (diff) 0.000000 0.0 -1 0 0.0 0.0

education -0.003269 (diff) 0.017007 0.0 0 0 0.0 0.0

black 0.000000 (diff) 0.000000 0.0 0 0 0.0 0.0

married -0.003061 (diff) 0.005102 0.0 0 0 0.0 0.0

nodegree -0.002041 (diff) 0.000000 0.0 0 0 0.0 0.0

re74 99.066521 (diff) 0.000000 -250.6 0 0 252.3 -197.1

re75 44.619415 (diff) 0.000000 0.0 0 0 -128.5 640.9

hispanic 0.001531 (diff) 0.007653 0.0 0 0 0.0 0.0

u74 0.004082 (diff) 0.000000 0.0 0 0 0.0 0.0

u75 0.000000 (diff) 0.000000 0.0 0 0 0.0 0.0

q1 2.141127 (Chi2) 0.061905 NA NA NA NA NA

27

Now we estimate SATT via the usual multiple imputation combining formulas (averaging
the point estimates and within and between variances, as usual; see King et al. 2001). The
function att implements these procedures:

> out <- att(mat2, re78 ~ treated, data = imputed)

> out

Linear regression model on CEM matched data:

SATT point estimate: 1177.182780 (p.value=0.123993)

95% conf. interval: [-322.747427, 2677.112987]

3.7 Creating paired samples

In same cases, it is useful to apply CEM so some data to create paired matched samples.
Given an output of cem, the function pair produces two sets of indexes corresponding to
pair matched units.

> data(LL)

> mat <- cem(data = LL, drop = "re78")

> psample <- pair(mat, data = LL)

Total number of units paired in CEM strata: 352

Total number of units matched: 722

each pair of observation has a different strata number

> table(psample$paired)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

28

not all observations can be matched in cem strata

> psample$paired[1:100]

15993 15994 15995 15996 15997 15998 15999 16000 16001 16002 16003 16004 16005

NA NA NA NA NA NA NA NA NA NA NA NA NA

16006 16007 16008 16009 16010 16011 16012 16013 16014 16015 16016 16017 16018

NA NA NA NA NA NA NA NA NA NA NA NA NA

16019 16020 16021 16022 16023 16024 16025 16026 16027 16028 16029 16030 16031

NA NA NA NA NA 1 NA NA NA 1 NA NA NA

16032 16033 16034 16035 16036 16037 16038 16039 16040 16041 16042 16043 16044

NA NA NA NA NA NA NA NA NA NA NA NA NA

16045 16046 16047 16048 16049 16050 16051 16052 16053 16054 16055 16056 16057

3 NA NA 4 NA NA NA NA NA NA NA NA NA

16058 16059 16060 16061 16062 16063 16064 16065 16066 16067 16068 16069 16070

NA NA NA NA NA NA NA NA NA NA NA 3 4

16071 16072 16073 16074 16075 16076 16077 16078 16079 16080 16081 16082 16083

NA 6 NA NA 7 NA NA NA NA NA NA NA NA

16084 16085 16086 16087 16088 16089 16090 16091 16092

8 NA NA 9 NA 9 NA NA NA

the remaining observations are then matched and the final list of all paired units is contained
in the filed full.paired

> table(psample$full.paired)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

29

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

361

2

> psample$full.paired[1:10]

15993 15994 15995 15996 15997 15998 15999 16000 16001 16002

265 268 240 189 196 195 267 177 227 232

paired; if they cannot be paired, the function indicates which units are left without a mate.

> mat1 <- cem(data = LL[-1,], drop = "re78")

> psample <- pair(mat1, data = LL[-1,])

Total number of units paired in CEM strata: 352

Total number of units matched: 720

Unit corresponding to row `15994', not paired

> table(psample$full.paired)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

30

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

31

4 Reference to CEM’s Functions

32

4.1 cem: Coarsened Exact Matching

Description

Implementation of Coarsened Exact Matching

Usage

cem(treatment=NULL, data = NULL, datalist=NULL, cutpoints = NULL,

grouping = NULL, drop=NULL, eval.imbalance = TRUE, k2k=FALSE,

method=NULL, mpower=2, L1.breaks = NULL, verbose = 0)

Arguments

treatment character, name of the treatment variable

data a data.frame

datalist a list of optional multiply imputed data.frame’s

cutpoints named list each describing the cutpoints for numerical variables (the
names are variable names). Each list element is either a vector of cut-
points, a number of cutpoints, or a method for automatic bin contruction.
See Details.

grouping named list, each element of which is a list of groupings for a single cate-
gorical variable. See Details.

drop a vector of variable names in the data frame to ignore during matching

eval.imbalance

Boolean. See Details.

k2k boolean, restrict to k-to-k matching? Default = FALSE

method distance method to use in k2k matching. See Details.

mpower power of the Minkowski distance. See Details.

L1.breaks list of cutpoints for the calculation of the L1 measure.

verbose controls level of verbosity. Default=0.

Details

When specifying cutpoints, several automatic methods may be chosen, including“sturges”
(Sturges’ rule, the default), “fd” (Freedman-Diaconis’ rule), “scott” (Scott’s rule) and
“ss” (Shimazaki-Shinomoto’s rule). See references for a description of each rule.

The grouping option is a list where each element is itself a list. For example, suppose for
variable quest1 you have the following possible levels "no answer", NA, "negative",

"neutral", "positive" and you want to collect ("no answer", NA, "neutral") into
a single group, then the grouping argument should contain list(quest1=list(c("no

33

answer", NA, "neutral"))). Or if you have a discrete variable elements with values
1:10 and you want to collect it into groups “1:3,NA”, “4”, “5:9”, “10” you specify in
grouping the following list list(elements=list(c(1:3,NA), 5:9)). Values not de-
fined in the grouping are left as they are. If cutpoints and groupings are defined for
the same variable, the groupings take precedence and the corresponding cutpoints are
set to NULL.

verbose: a number greater or equal to 0. The higher, the more info are provided during
the execution of the algorithm.

If eval.imbalance = TRUE (the default), cem$imbalance contains the imbalance mea-
sure by absolute difference in means for numerical variables and chi-square distance for
categorical variables. If FALSE then cem$imbalance is set to NULL. If data contains
missing data, the imbalance measures are not calculated.

If L1.breaks is missing, the default rule to calculate cutpoints is the Scott’s rule.

If k2k is set to TRUE, the algorithm return strata with the same number of treated and
control units per stratum, otherwise all the matched units are returned (default). When
k2k = TRUE, the user can choose a method (between ‘euclidean’, ‘maximum’, ‘manhattan’,
‘canberra’, ‘binary’ and ‘minkowski’) for nearest neighbor matching inside each cem

strata. By default method is set to ‘NULL’, which means random matching inside cem

strata. For the Minkowski distance the power can be specified via the argument mpower’.
For more information on method != NULL, refer to dist help page.

By default, cem treats missing values as distinct categories and matches observations with
missing values in the same variable in the same stratum provided that all the remaining
(corasened) covariates match.

If argument data is non-NULL and datalist is NULL, CEM is applied to the single data
set in data.

Argument datalist is a list of (multiply imputed) data frames (i.e., with missing cell
values imputed). If data is NULL, the function cem is applied independently to each
element of the list, resulting in separately matched data sets with different numbers of
treated and control units.

When data and datalist are both non-NULL, each multiply imputed observation is
assigned to the stratum in which it has been matched most frequently. In this case, the
algorithm outputs the same matching solution for each multiply imputed data set (i.e.,
an observation, and the number of treated and control units matched, in one data set
has the same meaning in all, and is the same for all)

Value

Returns an object of class cem.match if only data is not NULL or an object of class
cem.match.list, which is a list of objects of class cem.match plus a field called unique

which is true only if data and datalist are not both NULL. A cem.match object is a list
with the following slots:

34

call the call

strata vector of stratum number in which each observation belongs, NA if the
observation has not been matched

n.strata number of strata generated

vars report variables names used for the match

drop variables removed from the match

breaks named list of cutpoints, eventually NULL

treatment name of the treatment variable

groups factor, each observation belong to one group generated by the treatment
variable

n.groups number of groups identified by the treatment variable

group.idx named list, index of observations belonging to each group

group.len sizes of groups

tab summary table of matched by group

imbalance NULL or a vector of imbalances. See Details.

Author(s)

Stefano Iacus, Gary King, and Giuseppe Porro

References

Stefano Iacus, Gary King, Giuseppe Porro, “Matching for Casual Inference Without
Balance Checking,” http://gking.harvard.edu/files/abs/cem-abs.shtml

Examples

data(LL)

todrop <- c("treated","re78")

imbalance(LL$treated, LL, drop=todrop)

cem match: automatic bin choice
mat <- cem(treatment="treated", data=LL, drop="re78")
mat

cem match: user choiced coarsening
re74cut <- hist(LL$re74, br=seq(0,max(LL$re74)+1000, by=1000),plot=FALSE)$breaks

35

re75cut <- hist(LL$re75, br=seq(0,max(LL$re75)+1000, by=1000),plot=FALSE)$breaks
agecut <- hist(LL$age, br=seq(15,55, length=14),plot=FALSE)$breaks
mycp <- list(re75=re75cut, re74=re74cut, age=agecut)
mat <- cem(treatment="treated",data=LL, drop="re78",cutpoints=mycp)
mat

cem match: user choiced coarsening, k-to-k matching
mat <- cem(treatment="treated",data=LL, drop="re78",cutpoints=mycp,k2k=TRUE)
mat

mahalnobis matching: we use MatchIt
if(require(MatchIt)){
mah <- matchit(treated~age+education+re74+re75+black+hispanic+nodegree+married+u74+u75,

distance="mahalanobis", data=LL)
mah
#imbalance
imbalance(LL$treated, LL, drop=todrop, weights=mah$weights)
}

Multiply Imputed data
making use of Amelia for multiple imputation
if(require(Amelia)){
data(LL)
n <- dim(LL)[1]
k <- dim(LL)[2]

set.seed(123)

LL1 <- LL
idx <- sample(1:n, .3*n)
invisible(sapply(idx, function(x) LL1[x,sample(2:k,1)] <<- NA))

imputed <- amelia(LL1,noms=c("black","hispanic","treated","married",
"nodegree","u74","u75"))

imputed <- imputed$imputations[1:5]
without information on which observation has missing values
mat1 <- cem("treated", datalist=imputed, drop="re78")
mat1

ATT estimation
out <- att(mat1, re78 ~ treated, data=imputed)

with information about missingness
mat2 <- cem("treated", datalist=imputed, drop="re78", data=LL1)
mat2

36

ATT estimation
out <- att(mat2, re78 ~ treated, data=imputed)
}

37

4.2 att: Example of ATT estimation from CEM output

Description

An example of ATT estimation from CEM output

Usage

att(obj, formula, data, model="linear", extrapolate=FALSE, ntree=2000)

S3 method for class 'cem.att':

plot(x, obj, data, vars=NULL, ...)

S3 method for class 'cem.att':

summary(object, ...)

Arguments

obj a cem.match or cem.match.list object

formula a model formula. See Details.

data a single data.frame or a list of data.frame’s in case of cem.match.list

model one model. See Details.

extrapolate extrapolate the CEM restriced estimate to the whole data. Default =
FALSE.

ntree number of trees to generate in random forest model. Default = 2000.

x the output from the att function

vars a vector of variable names to be used in the parallel plots. By default all
variables involved in data matching are used.

object an object of class cem.att function

... passed to the plot function or to printCoefmat for the method summary

Details

Argument model can be lm, linear for linear regression model; logit for the the logistic
model; lme, linear-RE for the linear model with random effects. Also rf, forest for
the randomforest algorithm.

If the outcome is y and the treatment variable is T, then a formula like y ~ T will produce
the simplest estimate the ATT: with lm, it is just the coefficient on T, which is the same
as the difference in means, weighted by CEM stratum size. Users can add covariates to
span any remaining imbalance after the match, such as y ~ T + age + sex, to adjust
for variables age and sex.

In the case of multiply imputed datasets, the model is applied to each single matched
data and the ATT and is the standard error estimated using the standard formulas for
combining results of multiply imputed data.

38

When extrapolate = TRUE, the estimate model is extrapolated to the whole set of data.

There is a print method for the output of att. Specifying the option TRUE in a print

command gives complete output from the estimated model when availalble.

Value

A matrix of estimates with their standard error, or a list in the case of cem.match.list.

Author(s)

Stefano Iacus, Gary King, and Giuseppe Porro

References

Stefano Iacus, Gary King, Giuseppe Porro, “Matching for Casual Inference Without
Balance Checking,” http://gking.harvard.edu/files/abs/cem-abs.shtml

Examples

data(LL)

cem match: automatic bin choice
mat <- cem(treatment="treated",data=LL, drop="re78")
mat
mat$k2k

ATT estimate
homo1 <- att(mat, re78~treated, data=LL)
rand1 <- att(mat, re78~treated, data=LL, model="linear-RE")
rf1 <- att(mat, re78~treated, data=LL, model="rf")

homo2 <- att(mat, re78~treated, data=LL, extra=TRUE)
rand2 <- att(mat, re78~treated, data=LL, model="linear-RE", extra=TRUE)
rf2 <- att(mat, re78~treated, data=LL, model="rf", extra=TRUE)

homo1
summary(homo1)

rand1
rf1

homo2
rand2
rf2

39

plot(homo1, mat, LL, vars=c("age","education","re74","re75"))
plot(rand1, mat, LL, vars=c("age","education","re74","re75"))
plot(rf1, mat, LL, vars=c("age","education","re74","re75"))

plot(homo2, mat, LL, vars=c("age","education","re74","re75"))
plot(rand2, mat, LL, vars=c("age","education","re74","re75"))
plot(rf2, mat, LL, vars=c("age","education","re74","re75"))

reduce the match into k2k using euclidean distance within cem strata
mat2 <- k2k(mat, LL, "euclidean", 1)
mat2
mat2$k2k

ATT estimate after k2k
att(mat2, re78~treated, data=LL)

example with missing data
using multiply imputated data
we use Amelia for multiple imputation
if(require(Amelia)){
data(LL)
n <- dim(LL)[1]
k <- dim(LL)[2]

we generate missing values in 30
randomly in one colum per row
LL1 <- LL
idx <- sample(1:n, .3*n)
invisible(sapply(idx, function(x) LL1[x,sample(2:k,1)] <<- NA))

imputed <- amelia(LL1)
imputed <- imputed$imputations[1:5]

mat <- cem("treated", datalist=imputed, data=LL1, drop="re78")

print(mat)

att(mat, re78 ~ treated, data=imputed)
}

40

4.3 DW: Dehejia-Wahba dataset

Description

A subset of the Lalonde dataset (see cited reference).

Usage

data(DW)

Format

A data frame with 445 observations on the following 10 variables.

treated treated variable indicator

age age

education years of education

black race indicator variable

married marital status indicator variable

nodegree indicator variable of not possessing a degree

re74 real earnings in 1974

re75 real earnings in 1975

re78 real earnings in 1978 (post treatment outcome)

hispanic ethnic indicator variable

u74 unemployment in 1974 indicator variable

u75 unemployment in 1975 indicator variable

Source

see references

References

Dehejia, R., Wahba, S. (1999) “Causal Effects in Nonexperimental Studies: Reevaluating
the Evaluation of Training Programs,” Journal of the American Statistical Association,
94, 1053-1062.

41

4.4 imbalance: Calculates several imbalance measures

Description

Calculates several imbalance measures for the original and matched data sets

Usage

imbalance(group, data, drop=NULL, breaks = NULL, weights)

Arguments

group the group variable

data the data

drop a vector of variable names in the data frame to ignore

breaks a list of vectors of cutpoints used to calculate the L1 measure. See Details.

weights weights

Details

This function calculates several imbalance measures. For numeric variables, the difference
in means (under the column statistic), the difference in quantiles and the L1 measure
is calculated. For categorical variables the L1 measure and the Chi-squared distance
(under column statistic) is calculated. Column type reports either (diff) or (Chi2)
to indicate the type of statistic being calculated.

If breaks is not specified, the Scott automated bin calculation is used (which coarsens
less than Sturges, which used in cem). Please refer to cem help page. In this case, breaks
are used to calculate the L1 measure.

This function also calculate the global L1 imbalance measure. If breaks is missing, the
default rule to calculate cutpoints is the Scott’s rule. See L1.meas help page for details.

Value

An object of class imbalance which is a list with the following two elements

tab Table of imbalance measures

L1 The global L1 measure of imbalance

Author(s)

Stefano Iacus, Gary King, and Giuseppe Porro

42

References

Stefano Iacus, Gary King, Giuseppe Porro, “Matching for Casual Inference Without
Balance Checking,” http://gking.harvard.edu/files/abs/cem-abs.shtml

Examples

data(LL)

todrop <- c("treated","re78")

imbalance(LL$treated, LL, drop=todrop)

cem match: automatic bin choice
mat <- cem(treatment="treated", data=LL, drop="re78")

43

4.5 k2k: Reduction to k2k Matching

Description

Reduces a CEM output to a k2k matching

Usage

k2k(obj, data, method=NULL, mpower=2, verbose=0)

Arguments

obj an object as output from cem

data the original data.frame used by cem

method distance method to use in k2k matching. See Details.

mpower power of the Minkowski distance. See Details.

verbose controls level of verbosity. Default=0.

Details

This function transforms a typical cem matching solution to a k-to-k match, with k

variable along strata: i.e., in each stratum generated by cem, the match is reduce to
have the same number of treated and control units. (This option will delete some data
that matched well, and thus likely increase the variance, but it means that subsequent
analyses do not require weights.)

The user can choose a method (between ‘euclidean’, ‘maximum’, ‘manhattan’, ‘canberra’,
‘binary’ and ‘minkowski’) for nearest neighbor matching inside each cem strata. By
default method is set to ‘NULL’, which means random matching inside cem strata. For
the Minkowski distance the power can be specified via the argument mpower’. For more
information on method != NULL, refer to dist help page.

After k2k the weights of each matched observation are set to unity.

Value

obj an object of class cem.match

Author(s)

Stefano Iacus, Gary King, and Giuseppe Porro

References

Stefano Iacus, Gary King, Giuseppe Porro, “Matching for Casual Inference Without
Balance Checking,” http://gking.harvard.edu/files/abs/cem-abs.shtml

44

Examples

data(LL)

cem match: automatic bin choice
mat <- cem(treatment="treated", data=LL, drop="re78")
mat
mat$k2k

ATT estimate
att(mat, re78 ~ treated, data=LL)

transform the match into k2k
mat2 <- k2k(mat, LL, "euclidean", 1)
mat2
mat2$k2k

ATT estimate after k2k
att(mat2, re78 ~ treated, data=LL)

45

4.6 L1.meas: Evaluates L1 distance between multidimensional his-
tograms

Description

Evaluates L1 distance between multidimensional histograms

Usage

L1.meas(group, data, drop=NULL, breaks = NULL, weights)

Arguments

group the group variable

data the data

drop a vector of variable names in the data frame to ignore

breaks a list of vectors of cutpoints; if not specified, automatic choice will be
made

weights weights

Details

This function calculates the L1 distance on the k-dimensional histogram.

If breaks is not specified, the Scott automated bin calculation is used (which coarsens
less than Sturges, which used in cem). Please refer to cem help page. In this case, breaks
are used to calculate the L1 measure.

If breaks is missing, the default rule to calculate cutpoints is the Scott’s rule.

This code also calculate the Local Common Support (LCS) measure, which is the pro-
portion of non empty k-dimensional cells of the histogram which contain at least one
observation per group.

Value

An object of class L1.meas which is a list with the following fields

L1 The numerical value of the L1 measure

breaks A list of cutpoints used to calculate the L1 measure

LCS The numerical value of the Local Common Support proportion

Author(s)

Stefano Iacus, Gary King, and Giuseppe Porro

46

References

Stefano Iacus, Gary King, Giuseppe Porro, “Matching for Casual Inference Without
Balance Checking,” http://gking.harvard.edu/files/abs/cem-abs.shtml

Examples

data(LL)
L1.meas(LL$treated,LL, drop=c("treated","re78"))

47

4.7 LL: Lalonde dataset

Description

Lalonde experimental dataset (see cited reference).

Usage

data(LL)

Format

A data frame with 722 observations on the following 10 variables.

treated treatment variable indicator

age age

education years of education

black race indicator variable

married marital status indicator variable

nodegree indicator variable for not possessing a degree

re74 real earnings in 1974

re75 real earnings in 1975

re78 real earnings in 1978 (post-treatment outcome)

hispanic ethnic indicator variable

u74 unemployment in 1974 indicator variable

u75 unemployment in 1975 indicator variable

Source

see references

References

Lalonde, R. (1986) “Evaluating the Econometric Evaluations of Training Programs,”
American Economic Review, 76, 604-620.

48

4.8 LeLonde: Modified Lalonde dataset

Description

This is a modified version of the Lalonde experimental dataset used for explanatory
reasons only.

Usage

data(LL)

Format

A data frame with 722 observations on the following 11 variables.

treated treatment variable indicator

age age

education years of education

black race indicator variable

married marital status indicator variable

nodegree indicator variable for not possessing a degree

re74 real earnings in 1974

re75 real earnings in 1975

re78 real earnings in 1978 (post-treatment outcome)

hispanic ethnic indicator variable

u74 unemployment in 1974 indicator variable

u75 unemployment in 1975 indicator variable

q1 answer to survey question n1

Details

This data is a copy of the original Lalonde (1986) data set (see LL) with 10% of missing
data and an additional variable q1 which is the fictituous answer to the questionarie on
“Agreement on this job training program”.

Source

see references

References

Lalonde, R. (1986) “Evaluating the Econometric Evaluations of Training Programs,”
American Economic Review, 76, 604-620.

49

4.9 pair: Produces a paired sample out of a CEM match solution

Description

Produces a paired sample out of a CEM match solution

Usage

pair(obj, data, method=NULL, mpower=2, verbose=0)

Arguments

obj an object as output from cem

data the original data.frame used by cem

method distance method to use in k2k matching. See Details.

mpower power of the Minkowski distance. See Details.

verbose controls level of verbosity. Default=0.

Details

This function returns a vector of paired matched units index.

The user can choose a method (between ‘euclidean’, ‘maximum’, ‘manhattan’, ‘canberra’,
‘binary’ and ‘minkowski’) for nearest neighbor matching inside each cem strata. By
default method is set to ‘NULL’, which means random matching inside cem strata. For
the Minkowski distance the power can be specified via the argument mpower’. For more
information on method != NULL, refer to dist help page.

Value

obj a list with the fields paired, full.paired, reservoir and reservoir2.
The latter contain the indexes of the unmatched units.

Author(s)

Stefano Iacus, Gary King, and Giuseppe Porro

References

Stefano Iacus, Gary King, Giuseppe Porro, “Matching for Casual Inference Without
Balance Checking,” http://gking.harvard.edu/files/abs/cem-abs.shtml

50

Examples

data(LL)

cem match: automatic bin choice
mat <- cem(data=LL, drop="re78")

we want a set of paired units
psample <- pair(mat, data=LL)
table(psample$paired)
psample$paired[1:100]

table(psample$full.paired)
psample$full.paired[1:10]

cem match: automatic bin choice, we drop one row from the data set
mat1 <- cem(data=LL[-1,], drop="re78")

we want a set of paired units but we have an odd number of units in the data
psample <- pair(mat1, data=LL[-1,])
table(psample$full.paired)

51

4.10 relax.cem: Diagnostic tool for CEM

Description

Diagnostic tools for CEM

Usage

relax.cem(obj, data, depth=1, verbose = 1, L1.breaks=NULL, plot=TRUE, fixed=NULL,

shifts=NULL, minimal=NULL, use.coarsened=TRUE, eval.imbalance=TRUE, ...)

relax.plot(tab, group="1", max.terms=50, perc=.5, unique=FALSE, colors=TRUE)

Arguments

obj an object of class cem.

data the original data.

verbose controls the level of verbosity.

L1.breaks list of cutpoints for the calculation of the L1 measure.

plot plot the solutions?

tab the output table from relax.cem.

fixed vector of variable names which will not be relaxed.

max.terms plot only the last best results of relax.cem.

shifts a vector of proportions of shifts.

minimal the minimal number of intervals acceptable after relaxation. Should be a
nameed list of positive integers.

group character string denoting group id. Defaults to "1".

perc only plot if percentage of matched units is greater than perc.

unique only plot different solutions (in terms of matched units).

depth if 1, relaxes up to dropping one var, if 2 relaxes (up to dropping) two vars,
etc.

use.coarsened

used coarsened values for continuous variables.

colors If TRUE each variable is plotted in a different colour.

eval.imbalance

If TRUE L1 measure is evaluated at each iteration.

... passed to the relax.plot function.

52

Details

relax.cem starts from a cem solution (as given by cem) and tries several relaxed coars-
enings on the variables. Coarsenings corresponds to dividing the support of each variable
into a decreasing number of intervals of the same length (even if in the starting solution
intervals are of different lengths). Because CEM is MIB, the number of matched units
increases as the number of intervals decrease. All variables are coarsened into k intervals
along a sequence which starts from the original number of intervals and decreases to 10
intervals by 2, then continues from 10 down to 1 intervals by 1. If minimal is specified,
variables are coarsened down to that minimal value.

To observe MIB property of CEM use.coarsened (default) should be set to TRUE; other-
wise the coarsening of the continuous variable will be recalculated at each iteration and
there is no guarantee of monotonicity.

relax.cem outputs a list of tables. Each table is named Ggroup where group is the
id of the group. Each Ggroup table is ordered in increasing order of matched units of
group group. Columns PercGgroup and Ggroup report percentage and absolute number
of matched units for each group. Column Relaxed indicates which relaxation has been
done, with something like "V1(4), V3(5)", which means ”variable V1 has been split in
4 intervals of the same length and variable V3 into five intervals”. Thus, the number
of intervals is reported in parenthases and if equal to 1 means that the corresponding
variable is excluded from affecting the match (i.e. all observations are assigned to the
same interval).

If shifts is not null, each coarsening is shifted accordingly (see shift.cem for additional
details). In case of shifting “S:” appears in the labels.

The relax.plot, plot all the different relaxation in increasing order of number of treated
units matched. For each coarsening it also reports the value of the L1 measure. The
table generated by relax.cem may contain many entries. By default, only a portion of
best coarsenings are plotted (option max.terms). In addition, the user can specify to
plot the corasening for which at least a certain percentage of treated units have been
matched (option perc, by default 50 In addition, of several different coarsenings which
lead to the same number of treated units matched, the user can specify to plot only one
of them using the option unique = TRUE (default).

If L1.breaks are NULL they are taken from the cem object if available or calculated
atumatically as in cem.

Calling directly plot on the output of cem.relax has the same effect of calling directly
relax.plot.

Value

tab an invisible object containing the tabs and the L1breaks used

53

Author(s)

Stefano Iacus, Gary King, and Giuseppe Porro

References

Stefano Iacus, Gary King, Giuseppe Porro, “Matching for Casual Inference Without
Balance Checking,” http://gking.harvard.edu/files/abs/cem-abs.shtml

See Also

cem

Examples

data(LL)

mat <- cem(treatment="treated",data=LL, drop="re78")
mat
tab <- relax.cem(mat, LL, depth=1, plot=FALSE)

relax.plot(tab, group="1")
plot(tab, group="1")
relax.plot(tab, group="1", unique=TRUE)
relax.plot(tab, group="1", perc=0.6)
relax.plot(tab, group="1", perc=0.6,unique=TRUE)

tab1 <- relax.cem(mat, LL, depth=1, minimal=list(re74=6, age=3, education=3, re75=5))
tab2 <- relax.cem(mat, LL, depth=1, minimal=list(re74=6, age=3,

education=3, re75=5), shifts=0.01)
tab3 <- relax.cem(mat, LL, depth=1, minimal=list(age=3, education=3),

fixed=c("re74","re75"))

uncomment to run. Might be slow
tab4 <- relax.cem(mat, LL, depth=2, minimal=list(age=4,
education=3,re75=6),plot=FALSE, fixed="re74")
relax.plot(tab4)
relax.plot(tab4, unique=TRUE)
relax.plot(tab4, perc=0.7)

54

4.11 shift.cem: Diagnostic tool for CEM

Description

Diagnostic tools for CEM. Applies leftward and rightward shifts of the cutpoints.

Usage

shift.cem(obj, data, shifts=NULL, verbose=0, plot=TRUE)

Arguments

obj and object of class cem

data the original data

shifts a vector of proportions of shifts

verbose controls the level of verbosity

plot whether to plot a graphic representation of the search

Details

For each variable, shift all the cutpoints left and right by shifts times the smallest
epsilon of the coarsening. Shifting to the right produces a new cell on the left; shift to
the left, adds a new cell to the coarsening on the right. Only positive proportions should
be used; the algorithm will produce shifting on the left or on the right. The best shifting
of the original cem match is produced as output, where best is defined in terms of the
maximal total number of matched units mT+mC (see below).

By default, the function returns minimal information about the execution of the algo-
rithm. By setting a value greater than 0 in option verbose more feedback on the process
is returned.

Option plot = TRUE plots the number of treated units matched mT, the number of control
units matched mC, and the sum mT+mC, as a function of the shifts.

Value

tab an invisible object containing a new cem object

Author(s)

Stefano Iacus, Gary King, and Giuseppe Porro

References

Stefano Iacus, Gary King, Giuseppe Porro, “Matching for Casual Inference Without
Balance Checking,” http://gking.harvard.edu/files/abs/cem-abs.shtml

55

See Also

cem

Examples

data(LL)

m74 <- max(LL$re74, na.rm=TRUE)
s74 <- seq(0,m74,by=sd(LL$re74))
l74 <- length(s74)
if(max(s74) < m74) s74 <- c(s74, m74)

m75 <- max(LL$re75, na.rm=TRUE)
s75 <- seq(0,m75,by=sd(LL$re75))
l75 <- length(s75)
if(max(s75) < m75) s75 <- c(s75, m75)

mybr = list(re74=s74,
re75 = s75,
age = hist(LL$age,plot=FALSE)$breaks,
education = hist(LL$education,plot=FALSE)$breaks)

mat <- cem(treatment="treated",data=LL, drop="re78",cut=mybr)
mat

shift.cem(mat, data=LL, shifts=seq(0.01, 0.5, length=10), verb=1)

56

References

Ho, Daniel E., Kosuke Imai, Gary King and Elizabeth A. Stuart. Forthcoming. “MatchIt:
Nonparametric Preprocessing for Parametric Causal Inference.”Journal of Statistical Soft-
ware . http://gking.harvard.edu/matchit.

Ho, Daniel, Kosuke Imai, Gary King and Elizabeth Stuart. 2007. “Matching as Nonpara-
metric Preprocessing for Reducing Model Dependence in Parametric Causal Inference.”
Political Analysis 15:199–236. http://gking.harvard.edu/files/abs/matchp-abs.shtml.

Honaker, James, Gary King and Matthew Blackwell. 2006. “Amelia II: A Program for Missing
Data.”. http://gking.harvard.edu/amelia.

Iacus, Stefano M., Gary King and Giuseppe Porro. 2008. “Matching for Causal Inference
Without Balance Checking.”. http://gking.harvard.edu/files/abs/cem-abs.shtml.

King, Gary, James Honaker, Anne Joseph and Kenneth Scheve. 2001. “Analyzing Incom-
plete Political Science Data: An Alternative Algorithm for Multiple Imputation.” Ameri-
can Political Science Review 95(1, March):49–69. http://gking.harvard.edu/files/abs/evil-
abs.shtml.

King, Gary and Langche Zeng. 2006. “The Dangers of Extreme Counterfactuals.” Political
Analysis 14(2):131–159. http://gking.harvard.edu/files/abs/counterft-abs.shtml.

Lalonde, Robert. 1986. “Evaluating the Econometric Evaluations of Training Programs.”
American Economic Review 76:604–620.

57

	1 Introduction
	Overview
	Properties
	Goal
	Algorithm
	Measuring Balance

	2 Setup
	2.1 Software Requirements
	2.2 Installation
	2.3 Loading CEM
	2.4 Updating CEM

	3 A User's Guide
	3.1 Basic Evaluation and Analysis of Unmatched Data
	3.2 Coarsened Exact Matching
	3.2.1 Automated Coarsening
	3.2.2 Coarsening by Explicit User Choice

	3.3 Progressive coarsening
	3.4 Restricting the Matching Solution to a k-to-k Match
	3.5 Estimating the Causal Effect from cem output
	3.6 Matching and Missing Data
	3.6.1 Matching on Missingness
	3.6.2 Matching Multiply Imputed Data

	3.7 Creating paired samples

	4 Reference to CEM's Functions
	4.1 cem: Coarsened Exact Matching
	4.2 att: Example of ATT estimation from CEM output
	4.3 DW: Dehejia-Wahba dataset
	4.4 imbalance: Calculates several imbalance measures
	4.5 k2k: Reduction to k2k Matching
	4.6 L1.meas: Evaluates L1 distance between multidimensional histograms
	4.7 LL: Lalonde dataset
	4.8 LeLonde: Modified Lalonde dataset
	4.9 pair: Produces a paired sample out of a CEM match solution
	4.10 relax.cem: Diagnostic tool for CEM
	4.11 shift.cem: Diagnostic tool for CEM

