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1 Introduction

This program is designed to improve the estimation of causal effects via a powerful method of
matching that is widely applicable in observational data and exceptionally easy to understand
and use (if you understand how to draw a histogram, you will understand this method). The
program implements the CEM (Coarsened Exact Matching) algorithm. This algorithm, and
its many attractive statistical properties, are described in

Stefano M. Iacus, Gary King, and Giuseppe Porro, “Matching for Causal In-
ference Without Balance Checking”, http://gking.harvard.edu/files/abs/

cem-abs.shtml.

The paper shows that CEM is a monotonoic imbalance bounding (MIB) matching method
— which means that the maximum imbalance between the treated and control groups is
chosen by the user ex ante rather than discovered through the usual laborious process of
checking after the fact and repeatedly reestimating, and so that adjusting the imbalance on
one variable has no effect on the maximum imbalance of any other. CEM also strictly bounds
through ex ante user choice both the degree of model dependence and the average treatment
effect estimation error, eliminates the need for a separate procedure to restrict data to
common empirical support, meets the congruence principle, is robust to measurement error,
works well with multiple imputation and other methods for missing data, can be completely
automated, and is extremely fast computationally even with very large data sets. After
preprocessing data with CEM, the analyst may then use a simple difference in means or
whatever statistical model they would have applied without matching. CEM also works
well for multicategory treatments, creating randomized blocks in experimental designs, and
evaluating extreme counterfactuals.

2 Setup

2.1 Software Requirements

CEM works in conjunction with the R Project for Statistical Computing, and will run on any
platform where R is installed (Windows, Linux, or Mac). R is available free for download at
the Comprehensive R Archive Network (CRAN) at http://cran.r-project.org/. CEM
has been tested on the most recent version of R.

CEM may be run by installing the program directly, as indicated below, or by using the
alternative interface to CEM provided by MatchIt (http://gking.harvard.edu/matchit,
(Ho et al., Forthcoming)). Using CEM directly is faster. The MatchIt interface is easier
for some applications and works seemlessly with Zelig (http://gking.harvard.edu/zelig)
for estimating causal effects after matching, but presently only offers a subset of features
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of the R version. A Stata verison of CEM is also available at the CEM web site, http:
//gking.harvard.edu/cem.

2.2 Installation

To install cem, type at the R command prompt,

> install.packages("cem")

and CEM will install itself onto your system automatically from CRAN. You may alterna-
tively load the beta test version as

> install.packages("cem",repos="http://gking.harvard.edu/cem")

2.3 Loading CEM

You need to install CEM only once, but you must load it prior to each use. Do this at the
R prompt:

> library(cem)

2.4 Updating CEM

We recommend that you periodically update CEM at the R prompt by typing:

> update.packages()

which will update all the libraries including CEM and load the new version of the package
with

> library(cem)

3 A User’s Guide

We show here how to use CEM through a simple running example: the National Supported
Work (NSW) Demonstration data, also known as the Lalonde data set (Lalonde, 1986).
This program provided training to selected individuals for 12-18 months and help finding
a job in the hopes of increasing their’ earnings. The treatment variable, treated, is 1 for
participants (the treatment group) and 0 for nonparticipants (the control group). The key
outcome variable is earnings in 1978 (re78). The statistical goal is to estimate the sample
average treatment effect on the treated (the “SATT”).

Since participation in the program was not assigned strictly at random, we must control
for a set of pretreatment variables by the CEM algorithm. These pre-treatment variables
include age (age), years of education (education), marital status (married), lack of a high
school diploma (nodegree), race (black, hispanic), indicator variables for unemployment in
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1974 (u74) and 1975 (u75), and real earnings in 1974 (re74) and 1975 (re75). Some of these
are dichotomous (married, nodegree, black, hispanic, u74, u75), some are categorical
(age and education), and the earnings variables are continuous and highly skewed with
point masses at zero.

Matching is not a method of estimation; it is a way to preprocess a data set so that
estimation of SATT based on the matched data set will be less “model-dependent” (i.e., less
a function of apparently small and indefensible modeling decisions) than when based on the
original full data set. Matching involves pruning observations that have no close matches on
pre-treatment covariates in both the treated and control groups. The result is typically less
model-dependence, bias, and (by removing heterogeneity) inefficiency (King and Zeng, 2006;
Ho et al., 2007; Iacus, King and Porro, 2008).

3.1 Basic Evaluation and Analysis of Unmatched Data

We begin with a naive estimate of SATT — the simple difference in means — which would
be useful only if the in-sample distribution of pre-treatment covariates were the same in the
treatment and control groups:

> require(cem)

How to use CEM? Type vignette("cem")

> data(LL)

> tr <- which(LL$treated == 1)

> ct <- which(LL$treated == 0)

> ntr <- length(tr)

> nct <- length(ct)

The data include 297 treated units and 425 control units. The (unadjusted and therefore
likely biased) difference in means is then:

> mean(LL$re78[tr]) - mean(LL$re78[ct])

[1] 886.3

Because the variable treated was not randomly assigned, the pre-treatment covariates
differ between the treated and control groups. To see this, we focus on these pre-treatment
covariates:

> vars <- c("age", "education", "black", "married", "nodegree",

+ "re74", "re75", "hispanic", "u74", "u75")
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The overall imbalance is given by the L1 statistic, introduced in Iacus, King and Porro
(2008) as a comprehensive measure of global imbalance. It is based on the L1 difference
between the multidimensional histogram of all pretreatment covariates in the treated group
and that in the control group. Perfect global balance is indicated by L1 = 0, and larger
values indicate larger imbalance between the groups. To use this measure, we require a list
of bin sizes for the numerical variables. Our functions compute these automatically, or they
can be set by the user.1

We compute L1 statistic, as well as several unidimensional measures of imbalance via our
imbalance function. In our running example:

> imbalance(group = LL$treated, data = LL[vars])

Multivariate Imbalance Measure L1=1.196530

Univariate Imbalance Measures

statistic type L1 min 25% 50% 75% max

age 1.792e-01 (diff) 0.184702 0 1 0.00 -1.0 -6.0

education 1.922e-01 (diff) 0.153789 1 0 1.00 1.0 2.0

black 1.347e-03 (diff) 0.002694 0 0 0.00 0.0 0.0

married 1.070e-02 (diff) 0.021406 0 0 0.00 0.0 0.0

nodegree -8.348e-02 (diff) 0.166956 0 -1 0.00 0.0 0.0

re74 -1.015e+02 (diff) 0.071792 0 0 69.73 584.9 -2139.0

re75 3.942e+01 (diff) 0.114874 0 0 294.18 660.7 490.4

hispanic -1.867e-02 (diff) 0.037330 0 0 0.00 0.0 0.0

u74 -2.010e-02 (diff) 0.040198 0 0 0.00 0.0 0.0

u75 -4.509e-02 (diff) 0.090172 0 0 0.00 0.0 0.0

Only the overall L1 statistic measure includes imbalance with respect to the full joint dis-
tribution, including all interactions, of the covariates; in the case of our example, L1 =1.197.
The unidimensional measures in the table are all computed for each variable separately.

The first column in the table of unidimensional measures, labeled statistic, reports the
difference in means for numerical variables (indicated by the second column, type, reporting
(diff)) or a chi-square difference for categorical variables (when the second column reports
(Chi2)). In our running example, all variables are continuous or dichotomous, and so (diff)

appears in all rows. The second column, labeled L1, reports the Lj
1 measure, which is L1

computed for each variable separately (which of course interactions). The remaining columns
in the table report the difference in the empirical quantile of the distributions of the two
groups for the 0th (min), 25th, 50th, 75th, and 100th (max) percentiles for each variable.

This particular table shows that variables re74 and re75 are imbalanced in the raw data
in many ways and variable age is balanced in means but not in the quantiles of the two

1Of course, as with drawing histograms, the choice of bins affects the final result. The important thing
is to choose one and keep it the same throughout to allow for fair comparisons. The particular choice is less
crucial.
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distributions. This table also illustrates the point that balancing only the means between
the treated and control groups does not necessarily guarantee balance in the rest of the
distribution. Most important, of course, is the overall L1 measure, since even if the marginal
distribution of every variable is perfectly balanced, the joint distribution can still be highly
imbalanced.

For convenience, an alternative use of imbalance allows you to drop some variables within
the function:

> todrop <- c("treated", "re78")

[1] "treated" "re78"

> imbalance(group = LL$treated, data = LL, drop = todrop)

Multivariate Imbalance Measure L1=1.196530

Univariate Imbalance Measures

statistic type L1 min 25% 50% 75% max

age 1.792e-01 (diff) 0.184702 0 1 0.00 -1.0 -6.0

education 1.922e-01 (diff) 0.153789 1 0 1.00 1.0 2.0

black 1.347e-03 (diff) 0.002694 0 0 0.00 0.0 0.0

married 1.070e-02 (diff) 0.021406 0 0 0.00 0.0 0.0

nodegree -8.348e-02 (diff) 0.166956 0 -1 0.00 0.0 0.0

re74 -1.015e+02 (diff) 0.071792 0 0 69.73 584.9 -2139.0

re75 3.942e+01 (diff) 0.114874 0 0 294.18 660.7 490.4

hispanic -1.867e-02 (diff) 0.037330 0 0 0.00 0.0 0.0

u74 -2.010e-02 (diff) 0.040198 0 0 0.00 0.0 0.0

u75 -4.509e-02 (diff) 0.090172 0 0 0.00 0.0 0.0

3.2 Coarsened Exact Matching

We now apply the coarsened exact matching algorithm by calling the function cem. The
CEM algorithm performs exact matching on coarsened data to determine matches and then
passes on the uncoarsened data from observations that were matched to estimate the causal
effect. Exact matching works by first sorting all the observations into strata, each of which
has identical values for all the coarsened pre-treatment covariates, and then discarding all
observations within any stratum that does not have at least one observation for each unique
value of the treatment variable.

To run this algorithm, we must choose a type of coarsening for each covariate. We show
how this is done this via a fully automated procedures in Section 3.2.1. Then we show how
to use explicit prior knowledge to choose the coarsening in Section 3.2.2, which is normally
preferable when feasible.
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In CEM, the treatment variable may be dichotomous or mutichotomous. Alternatively,
cem may be used for randomized block experiments without specifying a treatment variable;
in this case no strata are deleted and the treatment variable is (randomly) assigned to units
within each strata to ensure that each has at least one observation assigned each value of
the treated variable.

3.2.1 Automated Coarsening

In our running example we have a dichotomous treatment variable. In the following code,
we match on all variables but re78, which is the outcome variable and so should never be
included. Hence we proceed specifying "re78" in argument drop:

> mat <- cem(treatment = "treated", data = LL, drop = "re78")

The output object mat contains useful information about the match, including a (small)
table about the number of observations in total, matched, and unmatched, as well as the
results of a call to the imbalance function for information about the quality of the matched
data (unless eval.imbalance is set to FALSE). Since cem bounds the imbalance ex ante, the
most important information in mat is the number of observations matched. But the results
also give the imbalance in the matched data using the same measures as that in the original
data described in Section 3.1. Thus,

> mat

G0 G1

All 425 297

Matched 222 163

Unmatched 203 134

Multivariate Imbalance Measure L1=0.804709

Univariate Imbalance Measures

statistic type L1 min 25% 50% 75% max

age 1.862e-01 (diff) 1.820e-01 0 0 0.0 1.00 1.0

education 1.022e-02 (diff) 2.045e-02 0 0 0.0 0.00 0.0

black -1.110e-16 (diff) 1.249e-16 0 0 0.0 0.00 0.0

married 0.000e+00 (diff) 1.110e-16 0 0 0.0 0.00 0.0

nodegree -1.110e-16 (diff) 1.110e-16 0 0 0.0 0.00 0.0

re74 7.198e+00 (diff) 8.006e-02 0 0 0.0 -70.86 416.4

re75 1.221e+01 (diff) 1.427e-01 0 0 234.5 140.79 -852.3

hispanic 0.000e+00 (diff) 1.110e-16 0 0 0.0 0.00 0.0

u74 0.000e+00 (diff) 5.551e-17 0 0 0.0 0.00 0.0

u75 0.000e+00 (diff) 0.000e+00 0 0 0.0 0.00 0.0
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We can see from these results the number of observations matched and thus retained,
as well as those which were pruned because they were not comparable. By comparing the
imbalance results to the original imbalance table given in the previous section, we can see
that a good match can produce a substantial reduction in imbalance, not only in the means,
but also in the marginal and joint distributions of the data.

The function cem also generates weights for use in the evaluation of imbalance measures
and estimates of the causal effect (stored in mat$w).

3.2.2 Coarsening by Explicit User Choice

The power and simplicity of CEM comes from choosing the coarsening yourself rather than
using the automated algorithm as in the previous section. Choosing the coarsening enables
you to set the maximum level of imbalance ex ante, which is a direct function of the coarsening
you choose. As importantly, the coarsening is a fundamentally substantive act, almost
synonymous with the measurement of the original variables. In other words, if you know
something about the data you are analyzing, you have enough information to choose the the
coarsening. (And if you don’t know something about the data, why might ask why you are
analyzing it in the first place!)

In general, we want to set the coarsening for each variable so that substantively indis-
tinguishable values are grouped and assigned the same numerical value. Groups may be
of different sizes if appropriate. For example, in the US educational system, the following
discretization of years of education corresponds to different levels of school

Grade school 0–6
Middle school 7–8
High school 9–12
College 13–16
Graduate school >16

Using these natural breaks in the data to create the coarsening is generally a good approach
and certainly better than using fixed bin sizes that disregard these meaningful breaks. This
information is represented in the cutpoints option of cem. Because in our data, no respon-
dents fall in the last category,

> table(LL$education)

3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 6 5 7 15 62 110 162 195 122 23 11 2 1

so we define the cutpoints as:

> educut <- c(0, 6.5, 8.5, 12.5, 17)

and run cem adding only the cutpoints option, leaving the rest unchanged:
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> mat1 <- cem(treatment = "treated", data = LL, drop = "re78",

+ cutpoints = list(education = educut), eval.imbalance = TRUE)

> mat1

G0 G1

All 425 297

Matched 254 186

Unmatched 171 111

Multivariate Imbalance Measure L1=0.889174

Univariate Imbalance Measures

statistic type L1 min 25% 50% 75% max

age 1.443e-01 (diff) 1.685e-01 0 0 0.0 0.00 1.0

education -1.437e-02 (diff) 4.950e-02 0 0 -1.0 0.00 -2.0

black -1.110e-16 (diff) 1.249e-16 0 0 0.0 0.00 0.0

married 0.000e+00 (diff) 1.110e-16 0 0 0.0 0.00 0.0

nodegree 0.000e+00 (diff) 0.000e+00 0 0 0.0 0.00 0.0

re74 4.805e+01 (diff) 6.567e-02 0 0 369.3 233.61 416.4

re75 4.501e+01 (diff) 9.837e-02 0 0 226.6 -29.57 -852.3

hispanic 0.000e+00 (diff) 0.000e+00 0 0 0.0 0.00 0.0

u74 -5.551e-17 (diff) 5.551e-17 0 0 0.0 0.00 0.0

u75 -5.551e-17 (diff) 5.551e-17 0 0 0.0 0.00 0.0

As we can see, this matching solution differs from that resulting from our automated approach
in the previous section. For comparison, the automatic cutpoints produced by cem are stored
in the output object in slot breaks. So, for example, our automated coarsening produced:

> mat$breaks$education

[1] 3.0 4.3 5.6 6.9 8.2 9.5 10.8 12.1 13.4 14.7 16.0

whereas we can recover our personal choice of cutpoints as

> mat1$breaks$education

[1] 0.0 6.5 8.5 12.5 17.0

3.3 Progressive coarsening

Although the maximum imbalance is fixed ex ante by the user’s coarsening choices, the num-
ber of observations matched is determined as a consequence of the matching procedure. If
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you are dissatisfied with the number of observations available after matching, and you feel
that it is substantively appropriate to coarsen further, then just increase the coarsening (by
using fewer cutpoints). The result will be additional matches and of course a concommitant
increase in the maximum possible imbalance between the treated and control groups. This is
easy with CEM because, unlike most other methods, CEM is a monotonic imbalance bound-
ing (MIB) method, which means that increasing the imbalance on one variable (through a
change in coarsening) will not change the maximum imbalance on any other variable. MIB
thus enables you to tinker with the solution one variable at a time to quickly produce a
satisfactory result, if one is feasible.

If, however, you feel that additional coarsening is not appropriate, than too few obser-
ations may indicate that your data contains insufficient information to estimate the causal
effects of interest without model dependence; in that situation, you either give up or will
have to attempt adjusting for the pre-treatment covariates via modeling assumptions.

Suppose, instead, that you are unsure whether to coarsen further or how much to coarsen,
and are willing to entertain alternative matching solutions. We offer here an automated way
to compute these solutions. The idea is to relax the initial cem solution selectively and
automatically, to prune equivalent solutions, and to present them in a convenient manner
so that users can ascertain where the difficulties in matching in these data can be found
and what choices would produce which outcomes in terms of the numbers of observations
matched.

We start by illustrating what happens when we relax a CEM solution “by hand”. The
following three runs show the effect on the matching solution (in terms of the number of
observations and imbalance) when the coarsening for one variable (age) is relaxed from 10
to 6 to 3 bins. As can be seen, fewer cutpoints (which means larger bins) produces more
matched units and high maximum (and in this case actual) imbalance:

> cem("treated", LL, cutpoints = list(age = 10), drop = "re78")

G0 G1

All 425 297

Matched 228 161

Unmatched 197 136

Multivariate Imbalance Measure L1=0.870948

Univariate Imbalance Measures

statistic type L1 min 25% 50% 75% max

age 1.494e-01 (diff) 1.161e-01 0 1 0.0 0.0 1.0

education 1.097e-02 (diff) 2.195e-02 0 0 0.0 0.0 0.0

black 0.000e+00 (diff) 1.388e-17 0 0 0.0 0.0 0.0

married 6.939e-18 (diff) 1.180e-16 0 0 0.0 0.0 0.0
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nodegree 0.000e+00 (diff) 0.000e+00 0 0 0.0 0.0 0.0

re74 -5.508e+01 (diff) 1.192e-01 0 0 0.0 -350.4 416.4

re75 -3.020e+01 (diff) 9.398e-02 0 0 234.5 51.9 -852.3

hispanic 6.939e-18 (diff) 6.939e-18 0 0 0.0 0.0 0.0

u74 1.110e-16 (diff) 1.110e-16 0 0 0.0 0.0 0.0

u75 0.000e+00 (diff) 0.000e+00 0 0 0.0 0.0 0.0

> cem("treated", LL, cutpoints = list(age = 6), drop = "re78")

G0 G1

All 425 297

Matched 261 186

Unmatched 164 111

Multivariate Imbalance Measure L1=0.905692

Univariate Imbalance Measures

statistic type L1 min 25% 50% 75% max

age 1.743e-01 (diff) 1.481e-01 0 0 0.00 0.0 7.0

education -1.776e-15 (diff) 1.075e-02 -1 0 0.00 0.0 0.0

black 0.000e+00 (diff) 0.000e+00 0 0 0.00 0.0 0.0

married 0.000e+00 (diff) 0.000e+00 0 0 0.00 0.0 0.0

nodegree 1.110e-16 (diff) 1.110e-16 0 0 0.00 0.0 0.0

re74 -8.674e+00 (diff) 8.672e-02 0 0 0.00 -106.9 416.4

re75 -6.146e+01 (diff) 7.595e-02 0 0 33.77 -138.5 -852.3

hispanic 0.000e+00 (diff) 0.000e+00 0 0 0.00 0.0 0.0

u74 0.000e+00 (diff) 0.000e+00 0 0 0.00 0.0 0.0

u75 0.000e+00 (diff) 1.110e-16 0 0 0.00 0.0 0.0

> cem("treated", LL, cutpoints = list(age = 3), drop = "re78")

G0 G1

All 425 297

Matched 307 209

Unmatched 118 88

Multivariate Imbalance Measure L1=1.124454

Univariate Imbalance Measures

11



statistic type L1 min 25% 50% 75% max

age 5.836e-01 (diff) 1.559e-01 0 0 0.0 1.00 7.0

education -5.229e-03 (diff) 8.886e-04 -1 0 0.0 0.00 0.0

black 0.000e+00 (diff) 0.000e+00 0 0 0.0 0.00 0.0

married 0.000e+00 (diff) 0.000e+00 0 0 0.0 0.00 0.0

nodegree 0.000e+00 (diff) 0.000e+00 0 0 0.0 0.00 0.0

re74 -1.661e+01 (diff) 1.193e-01 0 0 143.6 -14.51 636.8

re75 1.882e+00 (diff) 1.255e-01 0 0 129.0 -130.62 -852.3

hispanic 0.000e+00 (diff) 0.000e+00 0 0 0.0 0.00 0.0

u74 -5.551e-17 (diff) 1.665e-16 0 0 0.0 0.00 0.0

u75 0.000e+00 (diff) 0.000e+00 0 0 0.0 0.00 0.0

We automate this progressive coarsening procedure here in the relax.cem function. This
function starts with the output of cem and relaxes variables one (depth=1), two (depth=2),
or three (depth=3) at a time, while optionally keeping unchanged a chosen subset of the
variables which we know well or have important effects on the outcome (fixed). The function
also allows one to specify the minimal number of breaks of each variable (the default limit
being 1). We begin with this example:

> tab <- relax.cem(mat, LL, depth = 1, plot = FALSE)

Executing 42 different relaxations

.......[20%]....[40%].....[60%]....[80%]....[100%]

After all possible coarsening relaxations are attempted, the function returns a list of
tables, one per group (i.e. treated and control). Each row of the tables contain information
about the number of treated and control units matched, the value of the L1 measure, and
the type of relaxation made. Each table is the sorted according to the number of treated (or
control) units matched.

The user may want to see the output of tab$G1 or tab$G0 but these tables may be very
long, and so we provide a method plot to view these tables more conveniently. The output
of plot(tab) is plotted in Figure 1 from which it is seen that the most difficult variables
to match are age and education. On the x-axis of the plot the variable and the number of
equally sized bins used for the coarsening are used (color-coded by variable). On the y-axis
on the right is the absolute number of treated units matched, while the left side y-axis reports
the same number in percentages. The numbers below the dots in the graphs represent the L1

measure corresponding to that matching solution. This graph also gives a feeling of the MIB
behaviour of cem. When the tables produced by relax.cem are too large, the plot function,
allows for some reduction like printing only the best matching solutions (in the terms of
number of treated units matched), removing duplicates (i.e. different coarsenings may lead
to the same matching solution), or printing only solution where at least some percentage of
treated units, have been matched, or a combination of these. For more information refer to
the reference manual for the function relax.plot which can be called directly instead of
plot.
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Figure 1: Example of the graphical output of relax.cem.

Here is one example of use of plot in which we specify that only solutions with at least
60% of the treated units are matched and duplicated solutions are removed. The output can
be seen in Figure 2

> plot(tab, group = "1", perc = 0.6, unique = TRUE)

3.4 Restricting the matching solution to a k-to-k match

By default, CEM uses maximal information, resulting in strata that may include different
numbers of treated and control units. To compensate for the differential strata sizes, cem also
returns weights to be used in subsequent analyses. Although this is generally the best option,
a user with enough data may opt for a k-to-k solution to avoid the slight inconvenience of
needing to use weights.

The function k2k accomplishes this by pruning observations from a cem solution within
each stratum until the solution contains the same number of treated and control units in
all strata. Pruning occurs within a stratum (for which observations are indistuinguishable
to cem proper) by using nearest neighbor selection using a distance function specified by
the user (including euclidean, maximum, manhattan, canberra, binary, or minkowski). By
default method is set to NULL, which means random matching inside cem strata, an option
that may reduce the chance for bias. (For the Minkowski distance the power can be specified
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Figure 2: Example of reduced graphical output of relax.cem.

via the argument mpower. For more information on method != NULL, refer to dist help
page.)

Here is an example of this approach. First, by running cem:

> mat <- cem(treatment = "treated", data = LL, drop = "re78")

> mat

G0 G1

All 425 297

Matched 222 163

Unmatched 203 134

Multivariate Imbalance Measure L1=0.804709

Univariate Imbalance Measures

statistic type L1 min 25% 50% 75% max

age 1.862e-01 (diff) 1.820e-01 0 0 0.0 1.00 1.0

education 1.022e-02 (diff) 2.045e-02 0 0 0.0 0.00 0.0

black -1.110e-16 (diff) 1.249e-16 0 0 0.0 0.00 0.0

married 0.000e+00 (diff) 1.110e-16 0 0 0.0 0.00 0.0
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nodegree -1.110e-16 (diff) 1.110e-16 0 0 0.0 0.00 0.0

re74 7.198e+00 (diff) 8.006e-02 0 0 0.0 -70.86 416.4

re75 1.221e+01 (diff) 1.427e-01 0 0 234.5 140.79 -852.3

hispanic 0.000e+00 (diff) 1.110e-16 0 0 0.0 0.00 0.0

u74 0.000e+00 (diff) 5.551e-17 0 0 0.0 0.00 0.0

u75 0.000e+00 (diff) 0.000e+00 0 0 0.0 0.00 0.0

> mat$k2k

[1] FALSE

and now pruning to a k-to-k solution, using the euclidean distance within CEM strata:

> mat2 <- k2k(mat, LL, "euclidean", 1)

> mat2

G0 G1

All 425 297

Matched 139 139

Unmatched 286 158

Multivariate Imbalance Measure L1=0.804709

Univariate Imbalance Measures

statistic type L1 min 25% 50% 75% max

age 1.862e-01 (diff) 1.820e-01 0 0 0.0 1.00 1.0

education 1.022e-02 (diff) 2.045e-02 0 0 0.0 0.00 0.0

black -1.110e-16 (diff) 1.249e-16 0 0 0.0 0.00 0.0

married 0.000e+00 (diff) 1.110e-16 0 0 0.0 0.00 0.0

nodegree -1.110e-16 (diff) 1.110e-16 0 0 0.0 0.00 0.0

re74 7.198e+00 (diff) 8.006e-02 0 0 0.0 -70.86 416.4

re75 1.221e+01 (diff) 1.427e-01 0 0 234.5 140.79 -852.3

hispanic 0.000e+00 (diff) 1.110e-16 0 0 0.0 0.00 0.0

u74 0.000e+00 (diff) 5.551e-17 0 0 0.0 0.00 0.0

u75 0.000e+00 (diff) 0.000e+00 0 0 0.0 0.00 0.0

> mat2$k2k

[1] TRUE

Alternatively, we can produce the same result in one step by adding the k2k=TRUE option to
the original cem call.
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3.5 Estimating the Causal Effect from cem output

Using the output from cem, we can estimate SATT via the att function. The simplest
approach requires a weighted difference in means (unless k2k was used, in which case no
weights are required). For convenience, we compute this as a regression of the outcome
variable on a constant and the treatment variable,

> est <- att(mat, re78 ~ treated, data = LL)

> est

(Intercept) treated

Estimate 4.686e+03 550.9626

Std. Error 3.980e+02 611.6134

t value 1.178e+01 0.9008

Pr(>|t|) 1.578e-27 0.3682

where the SATT estimate is the coefficient on the treated variable, in our case 550.96. The
function att allows for R’s standard formula interface and, by default, uses lm to estimate
the model using the weights produced by cem.

If exact matching (i.e., without coarsening) was chosen this procedure is appropriate as
is. In other situations, with some coarsening, some imbalance remains in the matched data.
The remaining imbalance is strictly bounded by the level of coarsening, which can be seen
by any remaining variation within the coarsened bins. Thus, a reasonable approach in this
common situation is to attempt to adjust for the remaining imbalance via a statistical model.
(Modeling assumptions for models applied to the matched data are much less consequential
than they would otherwise be because CEM is known to strictly bound the level of model
dependence.) To apply a statistical model to control for the remaining imbalance, we use
the formula interface in att. For example:

> est2 <- att(mat, re78 ~ treated + re74 + re75, data = LL)

> est2

(Intercept) treated re74 re75

Estimate 4.257e+03 551.9584 0.4436 -0.1800

Std. Error 4.338e+02 607.6120 0.3110 0.3596

t value 9.813e+00 0.9084 1.4265 -0.5005

Pr(>|t|) 2.045e-20 0.3642 0.1545 0.6170

The user can also specify glm modeling in the case of binary, count, or other noncontin-
uous outcome variables. For more information, see the reference manual entry for att.

3.6 Matching and Missing Data

Almost all previous methods of matching assume the absence of any missing values. In
contrast, CEM offers two valid approaches to dealing with missing values (item nonresponse)
— either as values to match directly, as we describe in Section 3.6.1, or by a special procedure
to deal with multiply imputed data, as in Section 3.7.
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3.6.1 Matching on Missingness

[*** Need to change this example to show how we can coarsen NA with other observed
values. At present, the following example is accurate but pretty artificial. ***]

In the next example, we copy of the LL data onto LL2 and generate randomly missing
data in the earnings variables re74

> set.seed(123)

> LL2 <- LL

> n <- dim(LL)[1]

> LL2$re74[sample(1:n, 50)] <- NA

> summary(LL2$re74)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

0 0 734 3640 5160 39600 50

Now we run cem on the LL2 data with missing values and on a copy of the same data LL4

where the rows of LL2 containing missing values are omitted. For comparability, we use the
same cutpoints we used in Section 3.2 on the complete LL data. The cutpoints are contained
in mat$breaks

> mat3 <- cem("treated", LL2, cutpoints = mat$breaks, drop = "re78")

Missing values exist in the data!

> mat3

G0 G1

All 425 297

Matched 206 152

Unmatched 219 145

Multivariate Imbalance Measure L1=0.901912

Univariate Imbalance Measures

statistic type L1 min 25% 50% 75% max

age -1.643e-01 (diff) 1.649e-01 0 -1 -1.0 0.0 -2

education -1.096e-02 (diff) 2.193e-02 0 0 0.0 0.0 0

black -1.110e-16 (diff) 1.110e-16 0 0 0.0 0.0 0

married -1.388e-17 (diff) 1.388e-17 0 0 0.0 0.0 0

nodegree 0.000e+00 (diff) 0.000e+00 0 0 0.0 0.0 0

re74 2.540e+01 (diff) 1.242e-01 0 0 0.0 140.2 -1326
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re75 -4.153e+01 (diff) 1.488e-01 0 0 -325.3 -169.4 -1200

hispanic 0.000e+00 (diff) 0.000e+00 0 0 0.0 0.0 0

u74 0.000e+00 (diff) 0.000e+00 0 0 0.0 0.0 0

u75 -5.551e-17 (diff) 5.551e-17 0 0 0.0 0.0 0

and we compare the above with the solution obtained by dropping the observations with
missing data

> LL4 <- na.omit(LL2)

> mat4 <- cem("treated", LL4, cutpoints = mat$breaks, drop = "re78")

> mat4

G0 G1

All 396 276

Matched 203 148

Unmatched 193 128

Multivariate Imbalance Measure L1=0.912774

Univariate Imbalance Measures

statistic type L1 min 25% 50% 75% max

age -1.823e-01 (diff) 1.693e-01 0 0 -1.0 0.0 -2

education -1.126e-02 (diff) 2.252e-02 0 0 0.0 0.0 0

black -1.110e-16 (diff) 1.110e-16 0 0 0.0 0.0 0

married 0.000e+00 (diff) 1.110e-16 0 0 0.0 0.0 0

nodegree -1.110e-16 (diff) 1.110e-16 0 0 0.0 0.0 0

re74 2.540e+01 (diff) 1.276e-01 0 0 0.0 311.5 -1326

re75 -4.280e+01 (diff) 1.394e-01 0 0 -236.9 -336.1 -1200

hispanic 6.939e-18 (diff) 6.939e-18 0 0 0.0 0.0 0

u74 0.000e+00 (diff) 0.000e+00 0 0 0.0 0.0 0

u75 0.000e+00 (diff) 0.000e+00 0 0 0.0 0.0 0

and, as expected, the two solutions differ but not that much. The gain (in terms of
number of matched units) decreases as the number of covariates increases. As remarked,
cem does not do any missing data imputation, so at the analysis step the user might want
to use other imputation techniques conditionally on the CEM solution. But the suggested
approach is to do multiple imputation first and applying cem after on the multiply imputed
data sets as the next Section explains.

3.7 Matching Multiply Imputed Data

Consider a data set to be matched, some of which is missing. One approach to analyzing
data with missing values is multiple imputation, which involves creating m (usually about
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m = 5) data sets, each of which is the same as the original except that the missing values
have been imputed in each. Uncertainty in the values of the missing cells is represented by
variation in the imputations across the different imputed data sets (King et al., 2001).

As an example we create a version of the Lalonde data with missing values which we
create. (Normally of course one would not add missing values!). Thus,

> set.seed(123)

> n <- dim(LL)[1]

> k <- dim(LL)[2]

> LL1 <- LL

> idx <- sample(1:n, 0.3 * n)

> invisible(sapply(idx, function(x) LL1[x, sample(2:k, 1)] <<- NA))

Now LL1 contains missing data:

> summary(LL1)

treated age education black

Min. :0.000 Min. :17.0 Min. : 3.0 Min. : 0.000

1st Qu.:0.000 1st Qu.:19.0 1st Qu.: 9.0 1st Qu.: 1.000

Median :0.000 Median :23.0 Median :10.0 Median : 1.000

Mean :0.411 Mean :24.5 Mean :10.3 Mean : 0.804

3rd Qu.:1.000 3rd Qu.:27.0 3rd Qu.:11.0 3rd Qu.: 1.000

Max. :1.000 Max. :54.0 Max. :16.0 Max. : 1.000

NA's :18.0 NA's :21.0 NA's :19.000

married nodegree re74 re75

Min. : 0.000 Min. : 0.000 Min. : 0 Min. : 0

1st Qu.: 0.000 1st Qu.: 1.000 1st Qu.: 0 1st Qu.: 0

Median : 0.000 Median : 1.000 Median : 824 Median : 935

Mean : 0.159 Mean : 0.778 Mean : 3687 Mean : 3057

3rd Qu.: 0.000 3rd Qu.: 1.000 3rd Qu.: 5272 3rd Qu.: 4064

Max. : 1.000 Max. : 1.000 Max. :39571 Max. :37432

NA's :25.000 NA's :20.000 NA's : 20 NA's : 16

re78 hispanic u74 u75

Min. : 0 Min. : 0.000 Min. : 0.000 Min. : 0.000

1st Qu.: 0 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.000

Median : 4008 Median : 0.000 Median : 0.000 Median : 0.000

Mean : 5504 Mean : 0.105 Mean : 0.454 Mean : 0.399

3rd Qu.: 8782 3rd Qu.: 0.000 3rd Qu.: 1.000 3rd Qu.: 1.000

Max. :60308 Max. : 1.000 Max. : 1.000 Max. : 1.000

NA's : 18 NA's :19.000 NA's :17.000 NA's :23.000

Now we use Amelia package (Honaker, King and Blackwell, 2006) to create multiply
imputed data sets:
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> require(Amelia)

> imputed <- amelia(LL1, noms = c("black", "hispanic", "treated",

+ "married", "nodegree", "u74", "u75"))[1:5]

-- Imputation 1 --

1 2 3 4 5

-- Imputation 2 --

1 2 3 4 5

-- Imputation 3 --

1 2 3 4 5 6 7 8

-- Imputation 4 --

1 2 3 4

-- Imputation 5 --

1 2 3 4

Now imputed contains a list of 5 multiply imputed versions of LL1. We pass this list
to the cem function in the argument datalist and cem produces a set of multiply imputed
solutions, as usual with the original uncoarsened values of the variables, but now assigning
each multiply imputed observation to the strata where it falls most frequently. The output
of cem is a list of cem.match solutions (named match1, match2,. . . , match5). (Be sure to
also name the original data frame in option data or cem will merely run the basic algorithm
five separate times on each of the input data sets, a procedure that can be useful for batch
processing of data to be matched, but is not recommended for multiply imputed data sets
since the strata will not be the same across the data sets.) For example:

> mat2 <- cem("treated", datalist = imputed, drop = "re78", data = LL1)

> mat2

G0 G1

All 425 297

Matched 203 147

Unmatched 222 150

Multivariate Imbalance Measure L1=1.047998
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Univariate Imbalance Measures

statistic type L1 min 25% 50% 75% max

age 0.003073 (diff) 0.11111 0.00 0 1.0 0.0 1.0

education 0.001755 (diff) 0.03175 0.00 0 0.0 0.0 0.0

black -0.005442 (diff) 0.05442 0.00 0 0.0 0.0 0.0

married -0.008095 (diff) 0.05374 0.00 0 0.0 0.0 0.0

nodegree 0.006317 (diff) 0.04179 0.00 0 0.0 0.0 0.0

re74 -37.169126 (diff) 0.18021 98.68 0 0.0 -116.8 889.5

re75 32.514138 (diff) 0.17732 -648.39 0 202.6 147.5 -640.9

hispanic 0.001212 (diff) 0.01509 0.00 0 0.0 0.0 0.0

u74 0.008800 (diff) 0.05556 0.00 0 0.0 0.0 0.0

u75 0.005442 (diff) 0.04082 0.00 0 0.0 0.0 0.0

Now we estimate SATT via the usual multiple imputation combining formulas (averaging
the point estimates and within and between variances, as usual; see King et al. 2001). The
function att implements these procedures:

> out <- att(mat2, re78 ~ treated, data = imputed)

(Intercept) treated

Estimate 4527.5 729.1

Std. Error 426.2 658.4

4 Reference to CEM’s Functions
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4.1 cem: Coarsened Exact Matching

Description

Implementation of Coarsened Exact Matching

Usage

cem(treatment=NULL, data = NULL, datalist=NULL, cutpoints = NULL, drop=NULL,

eval.imbalance = TRUE, k2k=FALSE, method=NULL, mpower=2,

L1.breaks = NULL, verbose = 0)

Arguments

treatment character, name of the treatment variable

data a data.frame

datalist a list of imputed data.frame’s

cutpoints named list each describing the cutpoints for the variables (the names are
variable names). Each list element is either a vector of cutpoints, a number
of cutpoints, or a method for automatic bin contruction. See Details.

drop a vector of variable names in the data frame to ignore during matching

eval.imbalance

Boolean. See Details.

k2k boolean, return k-to-k matching? Default = FALSE

method distance method to use in k2k matching. See Details.

mpower power of the Minkowski distance. See Details.

L1.breaks list of cutpoints for the calculation of the L1 measure.

verbose controls level of verbosity. Default=0.

Details

When specifying cutpoints, several automatic methods can be chosen among “sturges”
(Sturges’ rule, the default), “fd” (Freedman-Diaconis’ rule), “scott” (Scott’s rule) and
“ss” (Shimazaki-Shinomoto’s rule). See references for a description of each rule.

verbose: a number greater or equal to 0. The higher, the more info are provided during
the execution of the algorithm.

If eval.imbalance = TRUE (the default), cem$imbalance contains the imbalance mea-
sure by absolute difference in means for numerical variables and chi-square distance for
categorical variables. If FALSE then cem$imbalance is set to NULL. If data contains
missing data, the imbalance measures are not calculated.
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If L1.breaks is missing, the default rule to calculate cutpoints is the Scott’s rule.

If k2k is set to TRUE, the algorithm return strata with the same number of treated and
control units per stratum, otherwise all the matched units are returned (default). When
k2k = TRUE, the user can choose a method (between ‘euclidean’, ‘maximum’, ‘manhattan’,
‘canberra’, ‘binary’ and ‘minkowski’) for nearest neighbor matching inside each cem

strata. By default method is set to ‘NULL’, which means random matching inside cem

strata. For the Minkowski distance the power can be specified via the argument mpower’.
For more information on method != NULL, refer to dist help page.

In case of missing data, cem gives a warning and treats missing values as distinct values
and match observations with missing values in the same variable in the same stratum
provided that all the remaining (corasened) covariates match.

If argument data is non NULL and datalist is NULL CEM is applied to the single data
set in data.

Argument datalist is a list of (multiply imputed) data frames. If data is NULL, the
function cem is applied independently to each element of the list, resulting in separately
matched data sets with different numbers of treated and control units.

When data and datalist are both non NULL, each multiply imputed observation is
assigned to the stratum in which it has been matched most frequently. In this case, the
algorithm outputs the same matching solution for each multiply imputed data set (i.e.,
an observation, and the number of treated and control units matched, in one data set
has the same meaning in all, and is the same for all)

Value

Returns an object of class cem.match if only data is not NULL or an object of class
multicem, which is a list of object of class cem.match plus a field called unique which is
true only if data and datalist are not both nNULL. A cem.match object is a list with
the following slots:

call the call

strata vector of stratum number in which each observation belongs, NA if the
observation has not been matched

n.strata number of strata generated

vars report variables names used for the match

drop variables removed from the match

breaks named list of cutpoints, eventually NULL

treatment name of the treatment variable

groups factor, each observation belong to one group generated by the treatment
variable
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n.groups number of groups identified by the treatment variable

group.idx named list, index of observations belonging to each group

group.len sizes of groups

tab summary table of matched by group

imbalance NULL or a vector of imbalances. See Details.

Author(s)

Stefano Iacus, Gary King, and Giuseppe Porro

References

Stefano Iacus, Gary King, Giuseppe Porro, “Matching for Casual Inference Without
Balance Checking,” http://gking.harvard.edu/files/abs/cem-abs.shtml

Examples

data(LL)

todrop <- c("treated","re78")

imbalance(LL$treated, LL, drop=todrop)

# cem match: automatic bin choice
mat <- cem(treatment="treated", data=LL, drop="re78")
mat

# cem match: user choiced coarsening
re74cut <- hist(LL$re74, br=seq(0,max(LL$re74)+1000, by=1000),plot=FALSE)$breaks
re75cut <- hist(LL$re75, br=seq(0,max(LL$re75)+1000, by=1000),plot=FALSE)$breaks
agecut <- hist(LL$age, br=seq(15,55, length=14),plot=FALSE)$breaks
mycp <- list(re75=re75cut, re74=re74cut, age=agecut)
mat <- cem(treatment="treated",data=LL, drop="re78",cutpoints=mycp)
mat

# cem match: user choiced coarsening, k-to-k matching
mat <- cem(treatment="treated",data=LL, drop="re78",cutpoints=mycp,k2k=TRUE)
mat

# mahalnobis matching
require(MatchIt)
mah <- matchit(treated~age+education+re74+re75+black+hispanic+nodegree+married+u74+u75,

distance="mahalanobis", data=LL)
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mah
#imbalance
imbalance(LL$treated, LL, drop=todrop, weights=mah$weights)

# Multiply Imputed data
require(Amelia)
data(LL)
n <- dim(LL)[1]
k <- dim(LL)[2]

set.seed(123)

LL1 <- LL
idx <- sample(1:n, .3*n)
invisible(sapply(idx, function(x) LL1[x,sample(2:k,1)] <<- NA))

imputed <- amelia(LL1,noms=c("black","hispanic","treated","married","nodegree","u74","u75"))[1:5]

# without information on which observation has missing values
mat1 <- cem("treated", datalist=imputed, drop="re78")
mat1

# ATT estimation
out <- att(mat1, re78 ~ treated, data=imputed)

# with information about missingness
mat2 <- cem("treated", datalist=imputed, drop="re78", data=LL1)
mat2

# ATT estimation
out <- att(mat2, re78 ~ treated, data=imputed)
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4.2 att: Example of ATT estimation from CEM output

Description

An example of ATT estimation from CEM output

Usage

att(obj, formula, data, model="lm", family="binomial")

Arguments

obj a cem.atch or multicem object

data a single data.frame or a list of data.frame’s in case of multicem

formula formula type specification of model. See Details.

model either lm or glm. See Details.

family used if model is glm, otherwise ignored.

Details

Argument data must be a single data frame or a list of (mulitply imputed) data frames.

Argument model can be lm or glm if the outcome variable in the ATT estimation is, e.g.,
a binary outcome. If the outcome is y and the treatment variable is T, then a formula

like y ~ T is enough to estimate the ATT: it is just the coefficient of T. User can add
covariates to span any remaining imbalance after the match, such as y ~ T + age +

sex, to adjust for variables age and sex.

In the case of multiply imputed datasets, the model is applied to each single matched
data and the ATT and is the standard error estimated using the standard formulas for
combining results of multiply imputed data.

Value

A matrix of estimates with their standard error, or a list in case of multicem.

Author(s)

Stefano Iacus, Gary King, and Giuseppe Porro

References

Stefano Iacus, Gary King, Giuseppe Porro, “Matching for Casual Inference Without
Balance Checking,” http://gking.harvard.edu/files/abs/cem-abs.shtml
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Examples

data(LL)

# cem match: automatic bin choice
mat <- cem(treatment="treated",data=LL, drop="re78")
mat
mat$k2k

# ATT estimate
att(mat, re78~treated, data=LL)

# reduce the match into k2k using euclidean distance within cem strata
mat2 <- k2k(mat, LL, "euclidean", 1)
mat2
mat2$k2k

# ATT estimate after k2k
att(mat2, re78~treated, data=LL)

# using multiply imputated data
require(Amelia)

data(LL)
n <- dim(LL)[1]
k <- dim(LL)[2]

# we generate missing values in 30
# randomly in one colum per row
LL1 <- LL
idx <- sample(1:n, .3*n)
invisible(sapply(idx, function(x) LL1[x,sample(2:k,1)] <<- NA))

# we use Amelia for multiple imputation

imputed <- amelia(LL1)

mat <- cem("treated", datalist=imputed[1:5], drop="re78")

out <- att(mat, re78 ~ treated, data=imputed[1:5])

str(out)
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4.3 DW: Dehejia-Wahba dataset

Description

A subset of the Lalonde dataset (see cited reference).

Usage

data(DW)

Format

A data frame with 445 observations on the following 10 variables.

treated treated variable indicator

age age

education years of education

black race indicator variable

married marital status indicator variable

nodegree indicator variable of not possessing a degree

re74 real earnings in 1974

re75 real earnings in 1975

re78 real earnings in 1978 (post treatment outcome)

hispanic ethnic indicator variable

u74 unemployment in 1974 indicator variable

u75 unemployment in 1975 indicator variable

Source

see references

References

Dehejia, R., Wahba, S. (1999) “Causal Effects in Nonexperimental Studies: Reevaluating
the Evaluation of Training Programs,” Journal of the American Statistical Association,
94, 1053-1062.
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4.4 imbalance: Calculates several imbalance measures

Description

Calculates several imbalance measures for the original and matched data sets

Usage

imbalance(group, data, drop=NULL, breaks = NULL, weights)

Arguments

group the group variable

data the data

drop a vector of variable names in the data frame to ignore

breaks a list of vectors of cutpoints used to calculate L1 measure. See Details.

weights weights

Details

This function calculate several imbalance measures. For numeric variables the difference
in means (under the column statistic, the difference in quantiles and the L1 measure
is calculated. For categorical variables the L1 measure and the Chi-squared distance
(under column statistic) is calculated. Column type reports either (diff) or (Chi2)
according to the type of statistic being calculated.

If the breaks are not specified, the same approach as in cem is used. Please refer to cem

help page. In this case, breaks are used to calculate the L1 measure.

This function also calculate the global L1 imbalance measure. If breaks is missing, the
default rule to calculate cutpoints is the Scott’s rule. See L1.meas help page for details.

Value

An object og class imbalance which is a list with the following two elements

tab Table of imbalance measures

L1 The global L1 measure of imbalance

Author(s)

Stefano Iacus, Gary King, and Giuseppe Porro

29



References

Stefano Iacus, Gary King, Giuseppe Porro, “Matching for Casual Inference Without
Balance Checking,” http://gking.harvard.edu/files/abs/cem-abs.shtml

Examples

data(LL)

todrop <- c("treated","re78")

imbalance(LL$treated, LL, drop=todrop)

# cem match: automatic bin choice
mat <- cem(treatment="treated", data=LL, drop="re78")
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4.5 k2k: Reduction to k2k Matching

Description

Reduces a CEM output to a k2k matching

Usage

k2k(obj, data, method=NULL, mpower=2, verbose=0)

Arguments

obj an object as output from cem

data the original data.frame used by cem

method distance method to use in k2k matching. See Details.

mpower power of the Minkowski distance. See Details.

verbose controls level of verbosity. Default=0.

Details

This function transforms a typical cem matching solution to a k-to-k match, with k

variable along strata: i.e., in each stratum generated by cem, the match is reduce to
have the same number of treated and control units. (This option will delete some data
that matched well, and thus likely increase the variance, but it means that subsequent
analyses do not require weights.)

The user can choose a method (between ‘euclidean’, ‘maximum’, ‘manhattan’, ‘canberra’,
‘binary’ and ‘minkowski’) for nearest neighbor matching inside each cem strata. By
default method is set to ‘NULL’, which means random matching inside cem strata. For
the Minkowski distance the power can be specified via the argument mpower’. For more
information on method != NULL, refer to dist help page.

After k2k the weights of each matched observation are set to unity.

Value

obj an object of class cem.match

Author(s)

Stefano Iacus, Gary King, and Giuseppe Porro

References

Stefano Iacus, Gary King, Giuseppe Porro, “Matching for Casual Inference Without
Balance Checking,” http://gking.harvard.edu/files/abs/cem-abs.shtml
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Examples

data(LL)

# cem match: automatic bin choice
mat <- cem(treatment="treated", data=LL, drop="re78")
mat
mat$k2k

# ATT estimate
att(mat, re78 ~ treated, data=LL)

# transform the match into k2k
mat2 <- k2k(mat, LL, "euclidean", 1)
mat2
mat2$k2k

# ATT estimate after k2k
att(mat2, re78 ~ treated, data=LL)
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4.6 L1.meas: Evaluates L1 distance between multidimensional his-
tograms

Description

Evaluates L1 distance between multidimensional histograms

Usage

L1.meas(group, data, drop=NULL, breaks = NULL, weights)

Arguments

group the group variable

data the data

drop a vector of variable names in the data frame to ignore

breaks a list of vectors of cutpoints; if not specified, automatic choice will be
made

weights weights

Details

This function calculates the L1 distance on the k-dimensional histogram.

If the breaks are not specified, the same approach as in cem is used. Please refer to cem

help page. In this case, breaks are used to calculate the L1 measure.

If breaks is missing, the default rule to calculate cutpoints is the Scott’s rule.

Value

An object of class L1.meas which is a list with the following fields

breaks A list of cutpoints used to calculate the L1 measure

value The numerical value of the L1 measure

Author(s)

Stefano Iacus, Gary King, and Giuseppe Porro

References

Stefano Iacus, Gary King, Giuseppe Porro, “Matching for Casual Inference Without
Balance Checking,” http://gking.harvard.edu/files/abs/cem-abs.shtml
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Examples

data(LL)
L1.meas(LL$treated,LL, drop=c("treated","re78"))
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4.7 LL: Lalonde dataset

Description

Lalonde experimental dataset (see cited reference).

Usage

data(LL)

Format

A data frame with 722 observations on the following 10 variables.

treated treatment variable indicator

age age

education years of education

black race indicator variable

married marital status indicator variable

nodegree indicator variable for not possessing a degree

re74 real earnings in 1974

re75 real earnings in 1975

re78 real earnings in 1978 (post-treatment outcome)

hispanic ethnic indicator variable

u74 unemployment in 1974 indicator variable

u75 unemployment in 1975 indicator variable

Source

see references

References

Lalonde, R. (1986) “Evaluating the Econometric Evaluations of Training Programs,”
American Economic Review, 76, 604-620.
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4.8 relax.cem: Diagnostic tool for CEM

Description

Diagnostic tools for CEM

Usage

relax.cem(obj, data, depth=1, verbose = 1, L1.breaks=NULL, plot=TRUE, fixed=NULL,

shifts=NULL, minimal=NULL, use.coarsened=TRUE)

relax.plot(tab, group="1", max.terms=50, perc=.5, unique=FALSE, colors=TRUE)

Arguments

obj an object of class cem.

data the original data.

verbose controls the level of verbosity.

L1.breaks list of cutpoints for the calculation of the L1 measure.

plot plot the solutions?

tab the output table from relax.cem.

fixed vector of variable names which will not be relaxed.

max.terms plot only the last best results of relax.cem.

shifts a vector of proportions of shifts.

minimal the minimal number of intervals acceptable after relaxation. Should be a
nameed list of positive integers.

group character string denoting group id. Defaults to "1".

perc only plot if percentage of matched units is greater than perc.

unique only plot different solutions (in terms of matched units).

depth if 1, relaxes up to dropping one var, if 2 relaxes (up to dropping) two vars,
etc.

use.coarsened

used coarsened values for continuous variables.

colors If TRUE each variable is plotted in a different colour.

Details

relax.cem starts from a cem solution (as given by cem) and tries several relaxed coars-
enings on the variables. Coarsenings corresponds to dividing the support of each variable
into a decreasing number of intervals of the same length (even if in the starting solution
intervals are of different lengths). Because CEM is MIB, the number of matched units
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increases as the number of intervals decrease. All variables are coarsened into k intervals
along a sequence which starts from the original number of intervals and decreases to 10
intervals by 2, then continues from 10 down to 1 intervals by 1. If minimal is specified,
variables are coarsened down to that minimal value.

To observe MIB property of CEM use.coarsened (default) should be set to TRUE; other-
wise the coarsening of the continuous variable will be recalculated at each iteration and
there is no guarantee of monotonicity.

relax.cem outputs a list of tables. Each table is named Ggroup where group is the
id of the group. Each Ggroup table is ordered in increasing order of matched units of
group group. Columns PercGgroup and Ggroup report percentage and absolute number
of matched units for each group. Column Relaxed indicates which relaxation has been
done, with something like "V1(4), V3(5)", which means ”variable V1 has been split in
4 intervals of the same length and variable V3 into five intervals”. Thus, the number
of intervals is reported in parenthases and if equal to 1 means that the corresponding
variable is excluded from affecting the match (i.e. all observations are assigned to the
same interval).

If shifts is not null, each coarsening is shifted accordingly (see shift.cem for additional
details). In case of shifting “S:” appears in the labels.

The relax.plot, plot all the different relaxation in increasing order of number of treated
units matched. For each coarsening it also reports the value of the L1 measure. The
table generated by relax.cem may contain many entries. By default, only a portion of
best coarsenings are plotted (option max.terms). In addition, the user can specify to
plot the corasening for which at least a certain percentage of treated units have been
matched (option perc, by default 50 In addition, of several different coarsenings which
lead to the same number of treated units matched, the user can specify to plot only one
of them using the option unique = TRUE (default).

If L1.breaks are NULL they are taken from the cem object if available or calculated
atumatically as in cem.

Calling directly plot on the output of cem.relax has the same effect of calling directly
relax.plot.

Value

tab an invisible object containing the tabs and the L1breaks used

Author(s)

Stefano Iacus, Gary King, and Giuseppe Porro
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References

Stefano Iacus, Gary King, Giuseppe Porro, “Matching for Casual Inference Without
Balance Checking,” http://gking.harvard.edu/files/abs/cem-abs.shtml

See Also

cem

Examples

data(LL)

mat <- cem(treatment="treated",data=LL, drop="re78")
mat
tab <- relax.cem(mat, LL, depth=1, plot=FALSE)

relax.plot(tab, group="1")
plot(tab, group="1")
relax.plot(tab, group="1", unique=TRUE)
relax.plot(tab, group="1", perc=0.6)
relax.plot(tab, group="1", perc=0.6,unique=TRUE)

tab1 <- relax.cem(mat, LL, depth=1, minimal=list(re74=6, age=3, education=3, re75=5))
tab2 <- relax.cem(mat, LL, depth=1, minimal=list(re74=6, age=3, education=3, re75=5), shifts=0.01)
tab3 <- relax.cem(mat, LL, depth=1, minimal=list(age=3, education=3), fixed=c("re74","re75"))

# uncomment to run. Might be slow
# tab4 <- relax.cem(mat, LL, depth=2, minimal=list(age=4, education=3,re75=6), plot=FALSE, fixed="re74")
# relax.plot(tab4)
# relax.plot(tab4, unique=TRUE)
# relax.plot(tab4, perc=0.7)
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4.9 shift.cem: Diagnostic tool for CEM

Description

Diagnostic tools for CEM. Applies leftward and rightward shifts of the cutpoints.

Usage

shift.cem(obj, data, shifts=NULL, verbose=0, plot=TRUE)

Arguments

obj and object of class cem

data the original data

shifts a vector of proportions of shifts

verbose controls the level of verbosity

plot whether to plot a graphic representation of the search

Details

For each variable, shift all the cutpoints left and right by shifts times the smallest
epsilon of the coarsening. Shifting to the right produces a new cell on the left; shift to
the left, adds a new cell to the coarsening on the right. Only positive proportions should
be used; the algorithm will produce shifting on the left or on the right. The best shifting
of the original cem match is produced as output, where best is defined in terms of the
maximal total number of matched units mT+mC (see below).

By default, the function returns minimal information about the execution of the algo-
rithm. By setting a value greater than 0 in option verbose more feedback on the process
is returned.

Option plot = TRUE plots the number of treated units matched mT, the number of control
units matched mC, and the sum mT+mC, as a function of the shifts.

Value

tab an invisible object containing a new cem object

Author(s)

Stefano Iacus, Gary King, and Giuseppe Porro

References

Stefano Iacus, Gary King, Giuseppe Porro, “Matching for Casual Inference Without
Balance Checking,” http://gking.harvard.edu/files/abs/cem-abs.shtml

39



See Also

cem

Examples

data(LL)

m74 <- max(LL$re74, na.rm=TRUE)
s74 <- seq(0,m74,by=sd(LL$re74))
l74 <- length(s74)
if(max(s74) < m74) s74 <- c(s74, m74)

m75 <- max(LL$re75, na.rm=TRUE)
s75 <- seq(0,m75,by=sd(LL$re75))
l75 <- length(s75)
if(max(s75) < m75) s75 <- c(s75, m75)

mybr = list(re74=s74,
re75 = s75,
age = hist(LL$age,plot=FALSE)$breaks,
education = hist(LL$education,plot=FALSE)$breaks)

mat <- cem(treatment="treated",data=LL, drop="re78",cut=mybr)
mat

shift.cem(mat, data=LL, shifts=seq(0.01, 0.5, length=10), verb=1)
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