
cem: Coarsened Exact Matching

Version 1.0.5
August 8, 2008

Contents

1 Introduction 2

2 Software Requirements 2

3 Installation 2

4 Loading CEM 3

5 Updating CEM 3

6 Highlights on CEM software usage 3
6.1 An example of use of cem . 5
6.2 Choosing the coarsening . 7
6.3 Progressive coarsening . 8
6.4 Restricting the matching solution to a k-to-k match 10
6.5 An example of estimation of ATT from cem output 12
6.6 Working with multiply imputed data . 12
6.7 Working with missing data . 17

7 R Functions 18
7.1 cem: Coarsened Exact Matching . 19
7.2 att: Example of ATT estimation from CEM output 23
7.3 DW: Dehejia-Wahba dataset . 25
7.4 eval.match: Calculates several one dimensional imbalance measures 26
7.5 k2k: Reduction to k2k Matching . 28
7.6 L1.meas: Evaluates L1 distance between multidimensional histograms 30
7.7 LL: Lalonde dataset . 31
7.8 multicem: Coarsened Exact Matching for Multiply Imputed Data 32
7.9 relax.cem: Diagnostic tool for CEM . 34
7.10 shift.cem: Diagnostic tool for CEM . 37

1

1 Introduction

This program is designed to improve the estimation of causal effects via a powerful method of
matching that is widely applicable in observational data and exceptionally easy to understand
and use (if you understand how to draw a histogram, you will understand this method). The
program implements the CEM (Coarsened Exact Matching) algorithm described in

Stefano M. Iacus, Gary King, and Giuseppe Porro,“Matching for Causal Infer-
ence Without Balance Checking”, copy at http://gking.harvard.edu/files/

abs/cem-abs.shtml.

CEM is a monotonoic imbalance bounding (MIS) matching method — which means that the
maximum imbalance between the treated and control groups is chosen by the user ex ante
rather than discovered through the usual laborious process of checking after the fact and
repeatdly reestimating, and so that adjusting the imbalance on one variable has no effect on
the maximum imbalance of any other. CEM also strictly bounds through ex ante user choice
both the degree of model dependence and the average treatment effect estimation error,
eliminates the need for a separate procedure to restrict data to common empirical support,
meets the congruence principle, is robust to measurement error, works well with multiple
imputation methods for missing data, can be completely automated, and is extremely fast
computationally even with very large data sets. After preprocessing data with CEM, the ana-
lyst may then use a simple difference in means or whatever statistical model they would have
applied without matching. CEM also works well for multicategory treatments, determining
blocks in experimental designs, and evaluating extreme counterfactuals.

2 Software Requirements

CEM works in conjunction with the R Project for Statistical Computing, and will run on any
platform where R is installed (Windows, Unix, or Mac). R is available free for download at
the Comprehensive R Archive Network (CRAN) at http://cran.r-project.org/. CEM
has been tested on the most recent version of R.

CEM may be run by installing the program directly, as indicated below, or by using the
alternative interface to CEM provided by MatchIt (http://gking.harvard.edu/matchit,
(Ho et al., Forthcoming)). Using CEM directly is faster. The MatchIt interface is easier for
some applications and also works seemlessly with Zelig (http://gking.harvard.edu/zelig)
for estimating causal effects after matching. (A Stata verison of CEM is under development.)

3 Installation

To install cem, type at the R command prompt,

> install.packages("cem")

2

and CEM will install itself onto your system automatically from CRAN. (You may alterna-
tively load the beta test version as

> install.packages("cem",repos="http://gking.harvard.edu/cem")

4 Loading CEM

You need to install CEM only once, but you must load it prior to each use. Do this at the
R prompt:

> library(cem)

5 Updating CEM

We recommend that you periodically update CEM at the R prompt by typing:

> update.packages()

and load the new version of the package with

> library(cem)

which will update all the libraries including CEM and load the new version of CEM.

6 Highlights on CEM software usage

We discuss briefly the use of cem without discussing statistical properties which can be found
in (Iacus, King and Porro, 2008). As a driving example, we use the National Supported
Work (NSW) Demonstration data, also known as the Lalonde data set (Lalonde, 1986).
The program provided training to the participants for 12-18 months and helped them in
finding a job. The goal of the program was to increase participants’ earnings, and so 1978
earnings (re78) is the key outcome variable. Pre-treatment variables were measured for both
participants and controls, including age (age), years of education (education), marital status
(married), lack of a high school diploma (nodegree), race (black, hispanic), indicator
variables for unemployment in 1974 (u74) and 1975 (u75), and real earnings in 1974 (re74)
and 1975 (re75). Some of these are dichotomous (married, nodegree, black, hispanic, u74,
u75), some are categorical (age and education), and the earnings variables are continuous
and highly skewed, with point masses at zero.

> require(cem)

How to use CEM? Type vignette("cem")

3

> data(LL)

> tr <- which(LL$treated == 1)

> ct <- which(LL$treated == 0)

> ntr <- length(tr)

> nct <- length(ct)

there a 297 treated units and 425 control units in the data. A simple but biased estimator
of the treatment effect is given by the simple difference in means.

> mean(LL$re78[tr]) - mean(LL$re78[ct])

[1] 886.3038

This would be the real estimate of ATT (average treatment effect on the treated) if the treated
and control units where perfectly or approximatively perfectly matched on all covariates.
Looking at the summary of this data for treated and control untis, we can see that only the
means are approximatively balanced. The function eval.match returns several measures of
imbalance between two groups of observation in a given data set. In our case, the group
variable is treated and we are interest in these variables

> vars <- c("age", "education", "black", "married", "nodegree",

+ "re74", "re75", "hispanic", "u74", "u75")

The function eval.match returns a table, in which the first column is named statistics.
This column contains the difference in means for numerical variables and the chi-square
measure in case of categorical variables. In the first case, the last column of the table reports
diff in the latter Chi2. In our case, all variables are numerical and/or dichotomous, so
we will see diff in any rows. After the column statistics follows the column L1 which
reports the L1 measure. This measure was introduced in Iacus, King and Porro (2008), as
measure of global imbalance among multidimensional distributions of treated and control
units. It is based on the L1 distance between the multidimensional histograms of the two
subpopulations of treated and control units. More formally, for each of the k covariates, say
Xj, a number of bins (or levels for categorical variables) `j is chosen. Denote by f`1···`k

(resp.
g`1···`k

) the frequency of treated (rep. control) units belonging to on of the cells defined by
the cross-tabulation of X1 × · · · ×Xk. The measure of global imbalance is defined as

L1(f, g) =
∑

`1···`k

|f`1···`k
− g`1···`k

|

where the summation is over all cells of the multivariate histogram. An important property
is that the typically numerous empty cells do not affect L1(f, g). Clearly, the L1 measure
can also be calculated variable by variable as the function eval.match does. To this end,
we choose some bins for the numerical variables and we keep these bins all over the text to
ensure comparability1.

1Of course, like in histograms drawing, the choice of bins affects the final result. The important thing is
to choose one and keep it the same to allow for fair comparisons.

4

> L1breaks = list(re74 = hist(LL$re74, plot = FALSE)$breaks, re75 = hist(LL$re75,

+ plot = FALSE)$breaks, age = hist(LL$age, plot = FALSE)$breaks,

+ education = hist(LL$education, plot = FALSE)$breaks)

The other columns in the table produces by eval.match report the difference in the empirical
quantile of the distributions of the two groups. Let’s have a look at the output produced by
eval.match

> eval.match(group = LL$treated, data = LL[vars], breaks = L1breaks)

statistics L1 min 25% 50% 75% max type

age 1.792038e-01 0.000000000 0 1 0.00000 -1.0000 -6.0000 diff

education 1.922361e-01 0.196236879 1 0 1.00000 1.0000 2.0000 diff

black 1.346801e-03 0.002693603 0 0 0.00000 0.0000 0.0000 diff

married 1.070311e-02 0.021406219 0 0 0.00000 0.0000 0.0000 diff

nodegree -8.347792e-02 0.166955833 0 -1 0.00000 0.0000 0.0000 diff

re74 -1.014862e+02 0.000000000 0 0 69.73096 584.9160 -2139.0195 diff

re75 3.941545e+01 0.000000000 0 0 294.18457 660.6865 490.3945 diff

hispanic -1.866508e-02 0.037330164 0 0 0.00000 0.0000 0.0000 diff

u74 -2.009903e-02 0.040198059 0 0 0.00000 0.0000 0.0000 diff

u75 -4.508616e-02 0.090172311 0 0 0.00000 0.0000 0.0000 diff

From the above table it can be seen that variables re74 and re75 present imbalance in many
aspects and variable age is balanced in means but the quantiles of the two distributions of
treated and control units differ. This is an empirical evidence that balancing on the means,
does is not necessarily guarantee balance in the whole distribution. We also measure the
imbalance for the whole joint distribution of the data

> L1 <- L1.meas(LL$treated, LL[vars], breaks = L1breaks)

> L1

[1] 1.149392

so the L1 measure equals 1.149.

6.1 An example of use of cem

We now apply cem. CEM is an algorithm which applies exact matching on pre-coarsened
data. The use may choose the coarsening level according to real knowledge of the data or
applying one of the standard automatic methods. Some classic measures of bin size are
based on the range of the data, an underlying normal distribution, or the inter-quartile
range. These are, respectively, known as Sturges, ∆st = (x(n) − x(1))/(log2 n + 1), Scott,

∆sc = 3.5
√

s̄2
nn

−1/3 (Scott, 1992), and Freedman and Diaconis (1981) ∆fd = 2(Q3−Q1)n
−1/3.

More recently, Shimazaki and Shinomoto (2007) developed an approach based on Poisson

5

sampling in time series analysis (in the attempt to recover spikes), which we find works well.
Although, cem has an interface similar to the hist function in base R to specify break points,
we suggest the reader to refer to cem man page for detailed explanation. In our example we
use automatic choice, i.e. we do not specify anything to cem, the minimal requires is the
specification of the data set to be matched and, when available, the name of the treatment
variable which, in our example, is treated. If the treatment variable is not specified, the
software produces a match in which the observations are collected in strata according to their
position in the multidimensional grid defined by the coarsening. When the treatment variable
is specified, then cem rejects all the strata in which only one group of observations is present.
The treatment variable does not need to be dichotomic, i.e. cem works on multitreatment
experiments. In the latter case, only strata with at least one observation per group (as defined
by the treatment variable) are retained. In our example we have a treatment variable and
we are not interested in matching on variable re78 which is the outcome variable in this
experiment. Hence we proceed specifying "re78" in argument drop

> mat <- cem(treatment = "treated", data = LL, drop = "re78")

Now the object mat contains several informations about the match. One is the summary of
the matching solution

> mat$tab

G0 G1

All 425 297

Matched 222 163

Unmatched 203 134

from which is emerges that even after coarsening, the treated and control units are not all
really comparable in terms of their covariates. The function cem also produces weights to
be used in the evaluation of imbalance measures and statistical estimates of the treatment
effect. These are contained in element w of the mat object. Let us see the summary for the
matched data

> cem.idx <- which(mat$matched)

> L1.cem <- L1.meas(LL$treated[cem.idx], LL[cem.idx, vars], breaks = L1breaks,

+ weights = mat$w[cem.idx])

> L1.cem

[1] 0.3402863

and the one-dimensional statistics

> eval.match(LL$treated[cem.idx], LL[cem.idx, vars], weights = mat$w[cem.idx])

6

statistics L1 min 25% 50% 75% max type

age 1.862046e-01 1.820041e-01 0 0 0.0000 1.00000 1.000 diff

education 1.022495e-02 2.044990e-02 0 0 0.0000 0.00000 0.000 diff

black -1.110223e-16 1.249001e-16 0 0 0.0000 0.00000 0.000 diff

married 0.000000e+00 1.110223e-16 0 0 0.0000 0.00000 0.000 diff

nodegree -1.110223e-16 1.110223e-16 0 0 0.0000 0.00000 0.000 diff

re74 7.197514e+00 8.005612e-02 0 0 0.0000 -70.85522 416.416 diff

re75 1.220698e+01 1.426976e-01 0 0 234.4843 140.79126 -852.252 diff

hispanic 0.000000e+00 1.110223e-16 0 0 0.0000 0.00000 0.000 diff

u74 0.000000e+00 5.551115e-17 0 0 0.0000 0.00000 0.000 diff

u75 0.000000e+00 0.000000e+00 0 0 0.0000 0.00000 0.000 diff

From the above results it can be seen that a good match can produce good reduction in
imbalance not only in the means but also in the marginal and joint distributions of the data.

6.2 Choosing the coarsening

When information about the real nature of the data is available, it is possible to specify
directly the coarsening of each variable. For example, in the US educational system, the
following discretization of years of education corresponds to different levels of school

grade school (0-6)
middle school (7-8)
high school (9-12)
college (13-16)
grad school (>16)

none of the observations belong to the last category

> table(LL$education)

3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 6 5 7 15 62 110 162 195 122 23 11 2 1

so we can define the cutpoints as follows

> educut <- c(0, 6.5, 8.5, 12.5, 17)

and run cem letting all the rest unchanged

> mat1 <- cem(treatment = "treated", data = LL, drop = "re78",

+ cutpoints = list(education = educut))

> mat1$tab

G0 G1

All 425 297

Matched 254 186

Unmatched 171 111

7

> cem.idx1 <- which(mat1$matched)

> eval.match(LL$treated[cem.idx1], LL[cem.idx1, vars], weights = mat1$w[cem.idx1])

statistics L1 min 25% 50% 75% max type

age 1.443242e-01 1.685288e-01 0 0 0.0000 0.00000 1.000 diff

education -1.437296e-02 4.949706e-02 0 0 -1.0000 0.00000 -2.000 diff

black -1.110223e-16 1.249001e-16 0 0 0.0000 0.00000 0.000 diff

married 0.000000e+00 1.110223e-16 0 0 0.0000 0.00000 0.000 diff

nodegree 0.000000e+00 0.000000e+00 0 0 0.0000 0.00000 0.000 diff

re74 4.804769e+01 6.566820e-02 0 0 369.2845 233.61060 416.416 diff

re75 4.501413e+01 9.837430e-02 0 0 226.5853 -29.56909 -852.252 diff

hispanic 0.000000e+00 0.000000e+00 0 0 0.0000 0.00000 0.000 diff

u74 -5.551115e-17 5.551115e-17 0 0 0.0000 0.00000 0.000 diff

u75 -5.551115e-17 5.551115e-17 0 0 0.0000 0.00000 0.000 diff

> L1.meas(LL$treated[cem.idx1], LL[cem.idx1, vars], breaks = L1breaks,

+ weights = mat1$w[cem.idx1])

[1] 0.6322395

As seen, the matching solution is different and looking at the substance of the problem may
help in the discovery of a good matching solution. Just for curiosity, the automatic cutpoints
produced by cem are stored in the output object in the slot breaks. So, for example, in the
first matching we have

> mat$breaks$education

[1] 3.0 4.3 5.6 6.9 8.2 9.5 10.8 12.1 13.4 14.7 16.0

and in our second example we recover our personal choice of cutpoints

> mat1$breaks$education

[1] 0.0 6.5 8.5 12.5 17.0

6.3 Progressive coarsening

In case the user is not satisfied by the matching solution, it is possible to relax the cem

solution selectively by changing the coarsening on each variable individually. Next example
shows the effect on the matching solution when one variable is relaxed

> cem("treated", LL, cutpoints = list(age = 10), drop = "re78")$tab

G0 G1

All 425 297

Matched 228 161

Unmatched 197 136

8

> cem("treated", LL, cutpoints = list(age = 6), drop = "re78")$tab

G0 G1

All 425 297

Matched 261 186

Unmatched 164 111

> cem("treated", LL, cutpoints = list(age = 3), drop = "re78")$tab

G0 G1

All 425 297

Matched 307 209

Unmatched 118 88

But it is also possible to explore different solutions using the relax.cem function. This
function, starts for the output of cem and relax variables one at times (depth=1), couple of
variables (depth=2), triplets (depth=3), etc. eventually keeping unchanged some subset of
the variables (fixed). It is also possible to specify the minimal number of breaks of each
variable (the limit being 1). We start with an example

> tab <- relax.cem(mat, LL, depth = 1, L1.breaks = L1breaks, plot = FALSE)

Executing 42 different relaxations

...........30...40...50............80...90...100.

after all possible coarsening relaxations are attempted, the function returns a list of tables.
There is one table per group (i.e. treated and control). Each row of the tables contain
the information about the number of treated and control units matched, the value of the L1

measure, and the type of relaxation made. Each table is the sorted according to the number of
treated (or control) units matched. The user may want to see the output of tab$G1 or tab$G0
but these tables may be very long, so we provide a method plot to plot these tables to visually
get an idea of which matching solution is acceptable or, simply, which variable is more difficult
to match. The output of plot(tab) is given in Figure 1 from which it is seen that the most
difficult variables to match are age and education. On the x-axis of the plot the variable
and the number of equally sized bins used for the coarsening are used. On the y-axis on the
right the absolute number of treated units matched is given, while the left-hand side y-axis
reports the same number in percentage. The numbers below the dots in the graphs represents
the L1 measure for that matching solution. This graph also gives a feeling of the monotonic
behaviour of cem. When the tables produced by relax.cem are too large, the plot function,
allows for some reduction like printing only the best matching solutions (in the terms of
number of treated units matched), removing duplicates (i.e. different coarsenings may lead
to the same matching solution), or printing only solution where at least some percentage of
treated units has been matched, or a combination of these. For more information refer to
the man page of the function relax.plot which can be called directly instead of plot. Here

9

● ●
●

●
● ● ●

● ●
●

● ●
●

● ● ● ●
● ● ●

● ● ● ● ●
●

●
●

● ●

●

●
● ●

● ● ●

●

●

●

●

●

●

Pre−relax: 163 matched (54.9 %)

54.955.2

56.656.957.257.657.958.258.658.959.359.6
60.360.6
61.3
62.0
62.663.063.3

64.6

66.7

68.7

70.4

71.4

74.1

163164

168169170171172173174175176177
179180
182
184
186187188

192

198

204

209

212

220

<s
ta

rt>

ed
uc

at
ion

(9
)

ed
uc

at
ion

(8
)

his
pa

nic
(1

)

re
74

(7
)

re
74

(8
)

re
74

(9
)

re
74

(5
)

re
74

(6
)

ed
uc

at
ion

(7
)

u7
5(

1)

bla
ck

(1
)

ag
e(

9)

re
75

(7
)

re
75

(8
)

re
75

(9
)

ag
e(

8)

re
75

(5
)

re
75

(6
)

no
de

gr
ee

(1
)

ed
uc

at
ion

(5
)

re
74

(4
)

u7
4(

1)

ed
uc

at
ion

(6
)

m
ar

rie
d(

1)

ag
e(

7)

re
74

(3
)

re
74

(2
)

re
74

(1
)

ag
e(

6)

ed
uc

at
ion

(4
)

ag
e(

5)

re
75

(3
)

re
75

(4
)

re
75

(1
)

re
75

(2
)

ed
uc

at
ion

(3
)

ed
uc

at
ion

(2
)

ag
e(

4)

ed
uc

at
ion

(1
)

ag
e(

2)

ag
e(

3)

ag
e(

1)

0.62
0.62

0.62

0.65

0.64
0.64

0.64

0.65
0.65

0.68

0.70
0.69

0.71

0.67
0.67

0.67
0.71

0.67
0.67

0.68

0.71
0.65

0.71
0.71

0.68

0.72

0.67

0.67

0.69
0.76

0.76

0.76

0.69
0.70

0.70
0.70

0.77

0.81

0.81

0.85

0.87

0.88

0.93

nu
m

be
r

of
 m

at
ch

ed

%
 m

at
ch

ed

Figure 1: Example of graphical output of relax.cem.

is one example of use of plot in which we specify that only solutions with at least 60% of
the treated units are matched and duplicated solutions are removed. The output can be seen
in Figure 2

> plot(tab, group = "1", perc = 0.6, unique = TRUE)

6.4 Restricting the matching solution to a k-to-k match

CEM usually returns strata containing a different number of treated and control units along
with weights to be used in the subsequent analysis. Although this is the best option, it might
happen that the user need a k-to-k solution. This is obtained by pruning observations from
each strata in order to have the same number of treated and control units. Because, up to
coarsening, the observation in a stratum are not distinguishable to CEM itself, the user can
specify a proper distance to prune locally (in each strata) the CEM solution. The function
k2k allow for this. The user may choose between several distances specifying the method

argument. In particular, the current choices are: ‘euclidean’, ‘maximum’, ‘manhattan’,
‘canberra’, ‘binary’ and ‘minkowski’) for nearest neighbor matching inside each cem strata.
By default method is set to ‘NULL’, which means random matching inside cem strata. For
the Minkowski distance the power can be specified via the argument mpower’. For more
information on method != NULL, refer to dist help page. More methods or distances may
be added in future releases of the package. Here follows an example of use

10

●
●

●

●

●
●

●

●

●

●

●

●

●

Pre−relax: 163 matched (54.9 %)

60.3
60.6

61.3

62.0

62.6
63.0
63.3

64.6

66.7

68.7

70.4

71.4

74.1

179
180

182

184

186
187
188

192

198

204

209

212

220

re
74

(3
)

re
74

(2
)

re
74

(1
)

ed
uc

at
ion

(4
)

ag
e(

5)

re
75

(3
)

re
75

(1
)

ed
uc

at
ion

(2
)

ag
e(

4)

ed
uc

at
ion

(1
)

ag
e(

2)

ag
e(

3)

ag
e(

1)

0.67

0.67

0.69

0.76

0.76

0.69

0.70

0.81

0.81

0.85

0.87

0.88

0.93

nu
m

be
r

of
 m

at
ch

ed

%
 m

at
ch

ed

Figure 2: Example of reduced graphical output of relax.cem.

> mat <- cem(treatment = "treated", data = LL, drop = "re78")

> mat$tab

G0 G1

All 425 297

Matched 222 163

Unmatched 203 134

> mat$k2k

[1] FALSE

and now pruning using the euclidean distance within CEM strata

> mat2 <- k2k(mat, LL, "euclidean", 1)

> mat2$tab

G0 G1

All 425 297

Matched 139 139

Unmatched 286 158

> mat2$k2k

[1] TRUE

11

6.5 An example of estimation of ATT from cem output

Now we pass to the estimation of the treatment effect. The package allow for an easy way
to produce such estimates via the att function. It is as easy as follows

> est <- att(mat, re78 ~ treated, data = LL)

> est

(Intercept) treated

Estimate 4.686104e+03 550.9625644

Std. Error 3.979609e+02 611.6134147

t value 1.177529e+01 0.9008347

Pr(>|t|) 1.577548e-27 0.3682423

The att estimate is the coefficient of the treated variable, in our case 550.962564412043.
The function att allows for the typical formula interface and, by default, it uses lm to
estimate the model and it uses the weights as calculated by cem. Via the formula interface,
it is also possible to specify more flexible models to span the remaining imbalance due to
not completely balanced covariates. Here follows and example

> est2 <- att(mat, re78 ~ treated + re74 + re75, data = LL)

> est2

(Intercept) treated re74 re75

Estimate 4.257088e+03 551.958379 0.4435914 -0.1799741

Std. Error 4.338083e+02 607.612041 0.3109701 0.3595815

t value 9.813294e+00 0.908406 1.4264760 -0.5005098

Pr(>|t|) 2.045067e-20 0.364238 0.1545499 0.6170051

In the estimation of the model, the real data are used and not the coarsened ones. The user
can also specify glm modeling in the case of binary outcome. For more information, see the
man page of the function att.

6.6 Working with multiply imputed data

It is not very uncommon that data comes with missing data. As an example we create a
version of the Lalonde data with missing data as follows

> n <- dim(LL)[1]

> k <- dim(LL)[2]

> set.seed(123)

> LL1 <- LL

> idx <- sample(1:n, 0.3 * n)

> invisible(sapply(idx, function(x) LL1[x, sample(2:k, 1)] <<- NA))

Now LL1 contain several missing data

12

> summary(LL1)

treated age education black

Min. :0.0000 Min. :17.00 Min. : 3.00 Min. : 0.0000

1st Qu.:0.0000 1st Qu.:19.00 1st Qu.: 9.00 1st Qu.: 1.0000

Median :0.0000 Median :23.00 Median :10.00 Median : 1.0000

Mean :0.4114 Mean :24.49 Mean :10.27 Mean : 0.8037

3rd Qu.:1.0000 3rd Qu.:27.00 3rd Qu.:11.00 3rd Qu.: 1.0000

Max. :1.0000 Max. :54.00 Max. :16.00 Max. : 1.0000

NA's :18.00 NA's :21.00 NA's :19.0000

married nodegree re74 re75

Min. : 0.0000 Min. : 0.0000 Min. : 0.0 Min. : 0.0

1st Qu.: 0.0000 1st Qu.: 1.0000 1st Qu.: 0.0 1st Qu.: 0.0

Median : 0.0000 Median : 1.0000 Median : 824.4 Median : 935.3

Mean : 0.1593 Mean : 0.7778 Mean : 3686.7 Mean : 3056.7

3rd Qu.: 0.0000 3rd Qu.: 1.0000 3rd Qu.: 5272.0 3rd Qu.: 4064.4

Max. : 1.0000 Max. : 1.0000 Max. :39570.7 Max. :37431.7

NA's :25.0000 NA's :20.0000 NA's : 20.0 NA's : 16.0

re78 hispanic u74 u75

Min. : 0 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000

1st Qu.: 0 1st Qu.: 0.0000 1st Qu.: 0.0000 1st Qu.: 0.0000

Median : 4008 Median : 0.0000 Median : 0.0000 Median : 0.0000

Mean : 5504 Mean : 0.1053 Mean : 0.4539 Mean : 0.3991

3rd Qu.: 8782 3rd Qu.: 0.0000 3rd Qu.: 1.0000 3rd Qu.: 1.0000

Max. :60308 Max. : 1.0000 Max. : 1.0000 Max. : 1.0000

NA's : 18 NA's :19.0000 NA's :17.0000 NA's :23.0000

Then we use Amelia package (Honaker, King and Blackwell, 2006) to do multiple imputation

> require(Amelia)

> imputed <- amelia(LL1, noms = c("black", "hispanic", "treated",

+ "married", "nodegree", "u74", "u75"))[1:5]

-- Imputation 1 --

1 2 3 4 5

-- Imputation 2 --

1 2 3 4 5

-- Imputation 3 --

1 2 3 4 5 6 7 8

13

-- Imputation 4 --

1 2 3 4

-- Imputation 5 --

1 2 3 4

Now imputed contains 5 multiply imputed data of LL1. We pass this to the multicem

function, we has an interface similar to cem but accepts a list of data frames and output a
list of cem solutions. Each matching oslution is called matchX where X varies from 1 to the
number of multiply imputed data sets.

> mat1 <- multicem("treated", datalist = imputed, drop = "re78")

> str(mat1, max.lev = 1)

List of 5

$ match1:List of 20

..- attr(*, "class")= chr "cem.match"

$ match2:List of 20

..- attr(*, "class")= chr "cem.match"

$ match3:List of 20

..- attr(*, "class")= chr "cem.match"

$ match4:List of 20

..- attr(*, "class")= chr "cem.match"

$ match5:List of 20

..- attr(*, "class")= chr "cem.match"

- attr(*, "class")= chr [1:2] "multicem" "list"

to see each matching solution one can use the usual approach

> mat1$match1$tab

G0 G1

All 425 297

Matched 202 142

Unmatched 223 155

> mat1$match2$tab

G0 G1

All 425 297

Matched 202 143

Unmatched 223 154

14

> mat1$match3$tab

G0 G1

All 425 297

Matched 203 146

Unmatched 222 151

> mat1$match4$tab

G0 G1

All 425 297

Matched 217 158

Unmatched 208 139

> mat1$match5$tab

G0 G1

All 425 297

Matched 199 151

Unmatched 226 146

In the above example, multicem has no clue about which rows where originally missing, so
each matching solution is different. Mixing together the output of each single match may be
risky, thus multicem allows to specify also the original data set with missing data. In this
case, multicem produces the same solutions assigning each multiply imputed observation in
the strata where it fall most frequently. This is the correct way to use multicem and allow
for correct combination of att estimate in each model. We give an example now

> mat2 <- multicem("treated", datalist = imputed, drop = "re78",

+ data = LL1)

> mat2$match1$tab

G0 G1

All 425 297

Matched 203 147

Unmatched 222 150

> mat2$match2$tab

G0 G1

All 425 297

Matched 203 147

Unmatched 222 150

> mat2$match3$tab

15

G0 G1

All 425 297

Matched 203 147

Unmatched 222 150

> mat2$match4$tab

G0 G1

All 425 297

Matched 203 147

Unmatched 222 150

> mat2$match5$tab

G0 G1

All 425 297

Matched 203 147

Unmatched 222 150

Now we can estimate the att safely with the usual Rubin’s formulas, i.e. the quantity of
interest (qoi) qj, j = 1, . . . ,m is estimated in each of the m multiply imputed data sets along
with its variance SE(qj)

2 (squared standard deviation). Then, the final estimate of the qoi
q̄ and its variance is given by

q̄ =
1

m

m∑
j=1

qj, SE(q̄)2 =
1

m

m∑
j=1

SE(qj)
2 +

(
1 +

1

m

)
S2

q

where S2
q =

∑m
j=1(qj − q̄)2/(m− 1). We make use again of the function att.

> out <- att(mat2, re78 ~ treated, data = imputed)

(Intercept) treated

Estimate 4527.4667 729.0929

Std. Error 426.2025 658.3930

In the case of multiple data sets, the output of att also contains a list of single att estimates
for each mutiply imputed data. Typing str(out) reveals the structure of the output. The
user can apply the att function also to the first example, but the estimate of the qoi is not
well defined from the statistical point of view.

16

6.7 Working with missing data

The function cem itself, does not allow currently to work with missing data directly and it is
not a method intended for data imputation. Matching with missing data is subject of future
development of the cem package. Nevertheless, it may be possible to circumvent the current
behaviour of cem using different user specific strategies. For example, the user may want
to recode missing data as ‘neutral’ or simply create a fictitious value to replace the missing
data which will be treated by cem as a new value of the data. The following example shows
this approach. We first generate missing data in one of the earnings variables of the LL data

> set.seed(123)

> LL2 <- LL

> n <- dim(LL)[1]

> LL2$re74[sample(1:n, 30)] <- NA

> summary(LL2$re74)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

0.0 0.0 785.1 3660.0 5215.0 39570.0 30.0

> idx <- which(is.na(LL$re74))

> LL2$re74[idx] <- -1000

and we imputed negative value for the missing earnings. Then we need to treat this new
value as a separate stratum. To this end, we redefine a new set of cutpoints starting from
the breaks of the original matching solution in Section 6.1 and adding some negative breaks

> mat$breaks$re74

[1] 0.000 3957.068 7914.136 11871.204 15828.272 19785.340 23742.408

[8] 27699.476 31656.544 35613.612 39570.680

> re74cut <- c(-1500, -1, mat$breaks$re74)

> re74cut

[1] -1500.000 -1.000 0.000 3957.068 7914.136 11871.204 15828.272

[8] 19785.340 23742.408 27699.476 31656.544 35613.612 39570.680

now we run cem on this modified data with the new breaks

> mat3 <- cem("treated", LL2, cutpoints = list(re74 = re74cut))

> mat3$tab

G0 G1

All 425 297

Matched 163 116

Unmatched 262 181

17

and we compare with the solution obtained by dropping the observations with missing data

> LL4 <- na.omit(LL2)

> mat4 <- cem("treated", LL4, cutpoints = list(re74 = re74cut))

> mat4$tab

G0 G1

All 407 285

Matched 161 114

Unmatched 246 171

and, as expected, the two solutions differ.

7 R Functions

18

7.1 cem: Coarsened Exact Matching

Description

Implementation of Coarsened Exact Matching

Usage

cem(treatment = NULL, data, cutpoints = NULL, drop = NULL,

eval.imbalance = FALSE, k2k = FALSE, method=NULL, mpower=2, verbose = 0)

Arguments

treatment character, name of the treatment variable

data a data.frame

cutpoints named list each describing the cutpoints for the variables (the names are
variable names). Each list element is either a vector of cutpoints, a number
of cutpoints, or a method for automatic bin contruction. See Details.

drop a vector of variable names in the data frame to ignore during matching

eval.imbalance

Boolean. See Details.

k2k boolean, return k-to-k matching? Default = FALSE

method distance method to use in k2k matching. See Details.

mpower power of the Minkowski distance. See Details.

verbose controls level of verbosity. Default=0.

Details

When specifying cutpoints, several automatic methods can be chosen among “sturges”
(Surges’ rule, the default), “fd” (Freedman-Diaconis’ rule), “scott” (Scott’s rule) and
“ss” (Shimazaki-Shinomoto’s rule). See references for a description of each rule.

verbose: a number greater or equal to 0. The higher, the more info are provided during
the execution of the algorithm.

If eval.imbalance = TRUE, cem$imbalance contains the imbalance measure by abso-
lute difference in means for numerical variables and chi-square distance for categorical
variables. If FALSE (the default) then cem$imbalance is set to NULL.

If k2k is set to TRUE, the algorithm return strata with the same number of treated and
control units per stratum, otherwise all the matched units are returned (default). When
k2k = TRUE, the user can choose a method (between ‘euclidean’, ‘maximum’, ‘manhattan’,
‘canberra’, ‘binary’ and ‘minkowski’) for nearest neighbor matching inside each cem

strata. By default method is set to ‘NULL’, which means random matching inside cem

19

strata. For the Minkowski distance the power can be specified via the argument mpower’.
For more information on method != NULL, refer to dist help page.

In case of missing data, cem gives a warning and treats missing values as distinct values
and match observations with missing values in the same variable in the same stratum
provided that all the remaining (corasened) covariates match.

Value

call the call

strata vector of stratum number in which each observation belongs, NA if the
observation has not been matched

n.strata number of strata generated

vars report variables names used for the match

drop variables removed from the match

breaks named list of cutpoints, eventually NULL

treatment name of the treatment variable

groups factor, each observation belong to one group generated by the treatment
variable

n.groups number of groups identified by the treatment variable

group.idx named list, index of observations belonging to each group

group.len sizes of groups

tab summary table of matched by group

imbalance NULL or a vector of imbalances. See Details.

Author(s)

Stefano Iacus, Gary King, and Giusseppe Porro

References

Stefano Iacus, Gary King, Giusseppe Porro, “Matching for Casual Inference Without
Balance Checking,” http://gking.harvard.edu/files/abs/cem-abs.shtml

Examples

data(LL)

mybr = list(re74=hist(LL$re74,plot=FALSE)$breaks,
re75 = hist(LL$re75,plot=FALSE)$breaks,
age = hist(LL$age,plot=FALSE)$breaks,

20

education = hist(LL$education,plot=FALSE)$breaks)

L1.meas(LL$treated, LL[,-c(1,9)], breaks=mybr)
eval.match(LL$treated, LL[,-c(1,9)], breaks=mybr)

cem match: automatic bin choice
mat <- cem(treatment="treated",data=LL, drop="re78")
mat$tab
cem1.idx <- which(mat$matched)
imbalance
L1.meas(LL$treated[cem1.idx], LL[cem1.idx,-c(1,9)], breaks=mybr)
eval.match(LL$treated[cem1.idx], LL[cem1.idx,-c(1,9)], breaks=mybr)
L1.meas(LL$treated[cem1.idx], LL[cem1.idx,-c(1,9)], breaks=mybr,weights=mat$w[cem1.idx])
eval.match(LL$treated[cem1.idx], LL[cem1.idx,-c(1,9)], breaks=mybr,weights=mat$w[cem1.idx])

cem match: user choiced coarsening
re74cut <- hist(LL$re74, br=seq(0,max(LL$re74)+1000, by=1000),plot=FALSE)$breaks
re75cut <- hist(LL$re75, br=seq(0,max(LL$re75)+1000, by=1000),plot=FALSE)$breaks
agecut <- hist(LL$age, br=seq(15,55, length=14),plot=FALSE)$breaks
mycp <- list(re75=re75cut, re74=re74cut, age=agecut)
mat <- cem(treatment="treated",data=LL, drop="re78",cutpoints=mycp)
mat$tab
cem2.idx <- which(mat$matched)
#imbalance
L1.meas(LL$treated[cem2.idx], LL[cem2.idx,-c(1,9)], breaks=mybr)
eval.match(LL$treated[cem2.idx], LL[cem2.idx,-c(1,9)], breaks=mybr)
L1.meas(LL$treated[cem2.idx], LL[cem2.idx,-c(1,9)], breaks=mybr,weights=mat$w[cem2.idx])
eval.match(LL$treated[cem2.idx], LL[cem2.idx,-c(1,9)], breaks=mybr,weights=mat$w[cem2.idx])

cem match: user choiced coarsening, k-to-k matching
mat <- cem(treatment="treated",data=LL, drop="re78",cutpoints=mycp,k2k=TRUE)
mat$tab
cem3.idx <- which(mat$matched)
#imbalance
L1.meas(LL$treated[cem3.idx], LL[cem3.idx,-c(1,9)], breaks=mybr)
eval.match(LL$treated[cem3.idx], LL[cem3.idx,-c(1,9)], breaks=mybr)
L1.meas(LL$treated[cem3.idx], LL[cem3.idx,-c(1,9)], breaks=mybr,weights=mat$w[cem3.idx])
eval.match(LL$treated[cem3.idx], LL[cem3.idx,-c(1,9)], breaks=mybr,weights=mat$w[cem3.idx])

mahalnobis matching
require(MatchIt)
mah <- matchit(treated~age+education+re74+re75+black+hispanic+nodegree+married+u74+u75,

distance="mahalanobis", data=LL)
mah
idx1 <- as.numeric(mah$match.matrix)

21

idx2 <- as.numeric(rownames(mah$match.matrix))
mah.idx <- match(c(idx1,idx2), rownames(LL))
#imbalance
L1.meas(LL$treated[mah.idx], LL[mah.idx,-c(1,9)], breaks=mybr)
eval.match(LL$treated[mah.idx], LL[mah.idx,-c(1,9)], breaks=mybr)

22

7.2 att: Example of ATT estimation from CEM output

Description

An example of ATT estimation from CEM output

Usage

att(obj, formula, data, model="lm", family="binomial")

Arguments

obj a cem or multicem object

data a single data.frame or a list of data.frame’s in case of multicem

formula formula type specification of model. See Details.

model either lm or glm. See Details.

family used if model is glm, otherwise ignored.

Details

Argument data must be a single data frame or a list of (mulitply imputed) data frames.

Argument model can be lm or glm if the outcome variable in the ATT estimation is, e.g.,
a binary outcome. If the outcome is y and the treatment variable is T, then a formula

like y ~ T is enough to estimate the ATT: it is just the coefficient of T. User can add
covariates to span any remaining imbalance after the match, such as y ~ T + age +

sex, to adjust for variables age and sex.

In the case of multiply imputed datasets, the model is applied to each single matched
data and the ATT and is the standard error estimated using the standard formulas for
combining results of multiply imputed data.

Value

A matrix of estimates with their standard error, or a list in case of multicem.

Examples

data(LL)

cem match: automatic bin choice
mat <- cem(treatment="treated",data=LL, drop="re78")
mat$tab
mat$k2k

ATT estimate

23

att(mat, re78~treated, data=LL)

reduce the match into k2k using euclidean distance within cem strata
mat2 <- k2k(mat, LL, "euclidean", 1)
mat2$tab
mat2$k2k

ATT estimate after k2k
att(mat2, re78~treated, data=LL)

using multiply imputated data
require(Amelia)

data(LL)
n <- dim(LL)[1]
k <- dim(LL)[2]

we generate missing values in 30
randomly in one colum per row
LL1 <- LL
idx <- sample(1:n, .3*n)
invisible(sapply(idx, function(x) LL1[x,sample(2:k,1)] <<- NA))

we use Amelia for multiple imputation

imputed <- amelia(LL1)

mat <- multicem("treated", datalist=imputed[1:5], drop="re78")

out <- att(mat, re78 ~ treated, data=imputed[1:5])

str(out)

24

7.3 DW: Dehejia-Wahba dataset

Description

A subset of the Lalonde dataset (see cited reference).

Usage

data(DW)

Format

A data frame with 445 observations on the following 10 variables.

treated treated variable indicator

age age

education years of education

black race indicator variable

married marital status indicator variable

nodegree indicator variable of not possessing a degree

re74 real earnings in 1974

re75 real earnings in 1975

re78 real earnings in 1978 (post treatment outcome)

hispanic ethnic indicator variable

u74 unemployment in 1974 indicator variable

u75 unemployment in 1975 indicator variable

Source

see references

References

Dehejia, R., Wahba, S. (1999) “Causal Effects in Nonexperimental Studies: Reevaluating
the Evaluation of Training Programs,” Journal of the American Statistical Association,
94, 1053-1062.

25

7.4 eval.match: Calculates several one dimensional imbalance mea-
sures

Description

Calculates several one dimensional imbalance measures for the original and matched data
sets

Usage

eval.match(group, data, breaks = NULL, weights)

Arguments

group the group variable

data the data

breaks a list of vectors of cutpoints used to calculate L1 measure. See Details.

weights weights

Details

This function calculate several imbalance measures. For numeric variables the difference
in means (under the column statistics, the difference in quantiles and the L1 measure
is calculated. For categorical variables the L1 measure and the Chi-squared distance
(under column statistics) is calculated.

If the breaks are not specified, the same approach as in cem is used. Please refer to cem

help page. In this case, breaks are used to calculate the L1 measure.

Value

value Table of imbalance measures

Author(s)

Stefano Iacus, Gary King, and Giusseppe Porro

References

Stefano Iacus, Gary King, Giusseppe Porro, “Matching for Casual Inference Without
Balance Checking,” http://gking.harvard.edu/files/abs/cem-abs.shtml

26

Examples

data(LL)

mybr = list(re74=hist(LL$re74,plot=FALSE)$breaks,
re75 = hist(LL$re75,plot=FALSE)$breaks,
age = hist(LL$age,plot=FALSE)$breaks,
education = hist(LL$education,plot=FALSE)$breaks)

L1.meas(LL$treated, LL[,-c(1,9)],breaks=mybr)
eval.match(LL$treated, LL[,-c(1,9)], breaks=mybr)

cem match: automatic bin choice
mat <- cem(treatment="treated",data=LL, drop="re78")
mat$tab
cem1.idx <- which(mat$matched)
imbalance
L1.meas(LL$treated[cem1.idx], LL[cem1.idx,-c(1,9)],breaks=mybr)
eval.match(LL$treated[cem1.idx], LL[cem1.idx,-c(1,9)], breaks=mybr)
eval.match(LL$treated[cem1.idx], LL[cem1.idx,-c(1,9)], breaks=mybr,weights=mat$w[cem1.idx])

27

7.5 k2k: Reduction to k2k Matching

Description

Reduces a CEM output to a k2k matching

Usage

k2k(obj, data, method=NULL, mpower=2, verbose=0)

Arguments

obj an object as output from cem

data the original data.frame used by cem

method distance method to use in k2k matching. See Details.

mpower power of the Minkowski distance. See Details.

verbose controls level of verbosity. Default=0.

Details

This function transforms a typical cem matching solution to a k-to-k match, with k

variable along strata: i.e., in each stratum generated by cem, the match is reduce to
have the same number of treated and control units. (This option will delete some data
that matched well, and thus likely increase the variance, but it means that subsequent
analyses do not require weights.)

The user can choose a method (between ‘euclidean’, ‘maximum’, ‘manhattan’, ‘canberra’,
‘binary’ and ‘minkowski’) for nearest neighbor matching inside each cem strata. By
default method is set to ‘NULL’, which means random matching inside cem strata. For
the Minkowski distance the power can be specified via the argument mpower’. For more
information on method != NULL, refer to dist help page.

After k2k the weights of each matched observation are set to unity.

Value

obj a cem object

Author(s)

Stefano Iacus, Gary King, and Giusseppe Porro

References

Stefano Iacus, Gary King, Giusseppe Porro, “Matching for Casual Inference Without
Balance Checking,” http://gking.harvard.edu/files/abs/cem-abs.shtml

28

Examples

data(LL)

cem match: automatic bin choice
mat <- cem(treatment="treated", data=LL, drop="re78")
mat$tab
mat$k2k

ATT estimate
att(mat, re78 ~ treated, data=LL)

transform the match into k2k
mat2 <- k2k(mat, LL, "euclidean", 1)
mat2$tab
mat2$k2k

ATT estimate after k2k
att(mat2, re78 ~ treated, data=LL)

29

7.6 L1.meas: Evaluates L1 distance between multidimensional his-
tograms

Description

Evaluates L1 distance between multidimensional histograms

Usage

L1.meas(group, data, breaks = NULL, weights)

Arguments

group the group variable

data the data

breaks a list of vectors of cutpoints; if not specified, automatic choice will be
made

weights weights

Details

This function calculates the L1 distance on the k-dimensional histogram.

If the breaks are not specified, the same approach as in cem is used. Please refer to cem

help page. In this case, breaks are used to calculate the L1 measure.

Value

value the L1 measure

Author(s)

Stefano Iacus, Gary King, and Giusseppe Porro

References

Stefano Iacus, Gary King, Giusseppe Porro, “Matching for Casual Inference Without
Balance Checking,” http://gking.harvard.edu/files/abs/cem-abs.shtml

Examples

data(LL)
L1.meas(LL$treated,LL[,-c(1,9)])

30

7.7 LL: Lalonde dataset

Description

Lalonde experimental dataset (see cited reference).

Usage

data(LL)

Format

A data frame with 722 observations on the following 10 variables.

treated treatment variable indicator

age age

education years of education

black race indicator variable

married marital status indicator variable

nodegree indicator variable for not possessing a degree

re74 real earnings in 1974

re75 real earnings in 1975

re78 real earnings in 1978 (post-treatment outcome)

hispanic ethnic indicator variable

u74 unemployment in 1974 indicator variable

u75 unemployment in 1975 indicator variable

Source

see references

References

Lalonde, R. (1986) “Evaluating the Econometric Evaluations of Training Programs,”
American Economic Review, 76, 604-620.

31

7.8 multicem: Coarsened Exact Matching for Multiply Imputed
Data

Description

Implementation of Coarsened Exact Matching for Multiply Imputed Data

Usage

multicem(treatment = NULL, datalist, data = NULL, cutpoints = NULL, drop = NULL,

eval.imbalance = FALSE, k2k = FALSE, method=NULL, mpower=2, verbose = 0)

Arguments

treatment character, name of the treatment variable

datalist a list of imputed data.frame’s

data original data.frame with missing values

cutpoints named list each describing the cutpoints for the variables (the names are
variable names). Each list element is either a vector of cutpoints, a number
of cutpoints, or a method for automatic bin contruction. See Details.

drop a vector of variable names in the data frame to ignore during matching

eval.imbalance

boolean. See Details.

k2k boolean, return k-to-k matching? Default = FALSE

method distance method to use in k2k matching. See Details.

mpower power of the Minkowski distance. See Details.

verbose controls level of verbosity. Default=0.

Details

Argument datalist is a list of (multiply imputed) data frames. If data is not speci-
fied, the function cem is applied independently to each element of the list, resulting in
separately matched data sets with different numbers of treated and control units.

When data is specified, each multiply imputed observation is assigned to the stratum
in which it has been matched most frequently. In this case, the algorithm outputs the
same matching solution for each multiply imputed data set (i.e., an observation, and the
number of treated and control units matched, in one data set has the same meaning in
all, and is the same for all)

All the remaining arguments are passed to cem as specified.

32

Value

An object of class multicem, i.e. a list of objects of class cem

Author(s)

Stefano Iacus, Gary King, and Giusseppe Porro

References

Stefano Iacus, Gary King, Giusseppe Porro, “Matching for Casual Inference Without
Balance Checking,” http://gking.harvard.edu/files/abs/cem-abs.shtml

Examples

require(Amelia)

data(LL)
n <- dim(LL)[1]
k <- dim(LL)[2]

set.seed(123)

LL1 <- LL
idx <- sample(1:n, .3*n)
invisible(sapply(idx, function(x) LL1[x,sample(2:k,1)] <<- NA))

imputed <- amelia(LL1,noms=c("black","hispanic","treated","married","nodegree","u74","u75"))[1:5]

without information on which observation has missing values
mat1 <- multicem("treated", datalist=imputed, drop="re78")
#str(mat1, max.lev=1)
mat1$match1$tab
mat1$match2$tab

ATT estimation
out <- att(mat1, re78 ~ treated, data=imputed)

with information about missingness
mat2 <- multicem("treated", datalist=imputed, drop="re78", data=LL1)
#str(mat2, max.lev=1)
mat2$match1$tab
mat2$match2$tab

ATT estimation
out <- att(mat2, re78 ~ treated, data=imputed)

33

7.9 relax.cem: Diagnostic tool for CEM

Description

Diagnostic tools for CEM

Usage

relax.cem(obj, data, depth=1, verbose = 1, L1.breaks=NULL, plot=TRUE, fixed=NULL,

shifts=NULL, minimal=NULL, use.coarsened=TRUE)

relax.plot(tab, group="1", max.terms=50, perc=.5, unique=FALSE, colors=TRUE)

Arguments

obj an object of class cem.

data the original data.

verbose controls the level of verbosity.

L1.breaks list of cutpoints for the calculation of the L1 measure.

plot plot the solutions?

tab the output table from relax.cem.

fixed vector of variable names which will not be relaxed.

max.terms plot only the last best results of relax.cem.

shifts a vector of proportions of shifts.

minimal the minimal number of intervals acceptable after relaxation. Should be a
nameed list of positive integers.

group character string denoting group id. Defaults to "1".

perc only plot if percentage of matched units is greater than perc.

unique only plot different solutions (in terms of matched units).

depth if 1, relaxes up to dropping one var, if 2 relaxes (up to dropping) two vars,
etc.

use.coarsened

used coarsened values for continuous variables.

colors If TRUE each variable is plotted in a different colour.

Details

relax.cem starts from a cem solution (as given by cem) and tries several relaxed coars-
enings on the variables. Coarsenings corresponds to dividing the support of each variable
into a decreasing number of intervals of the same length (even if in the starting solution
intervals are of different lengths). Because CEM is MIB, the number of matched units

34

increases as the number of intervals decrease. All variables are coarsened into k intervals
along a sequence which starts from the original number of intervals and decreases to 10
intervals by 2, then continues from 10 down to 1 intervals by 1. If minimal is specified,
variables are coarsened down to that minimal value.

To observe MIB property of CEM use.coarsened (default) should be set to TRUE; other-
wise the coarsening of the continuous variable will be recalculated at each iteration and
there is no guarantee of monotonicity.

relax.cem outputs a list of tables. Each table is named Ggroup where group is the
id of the group. Each Ggroup table is ordered in increasing order of matched units of
group group. Columns PercGgroup and Ggroup report percentage and absolute number
of matched units for each group. Column Relaxed indicates which relaxation has been
done, with something like "V1(4), V3(5)", which means ”variable V1 has been split in
4 intervals of the same length and variable V3 into five intervals”. Thus, the number
of intervals is reported in parenthases and if equal to 1 means that the corresponding
variable is excluded from affecting the match (i.e. all observations are assigned to the
same interval).

If shifts is not null, each coarsening is shifted accordingly (see shift.cem for additional
details). In case of shifting “S:” appears in the labels.

The relax.plot, plot all the different relaxation in increasing order of number of treated
units matched. For each coarsening it also reports the value of the L1 measure. The
table generated by relax.cem may contain many entries. By default, only a portion of
best coarsenings are plotted (option max.terms). In addition, the user can specify to
plot the corasening for which at least a certain percentage of treated units have been
matched (option perc, by default 50 In addition, of several different coarsenings which
lead to the same number of treated units matched, the user can specify to plot only one
of them using the option unique = TRUE (default).

Calling directly plot on the output of cem.relax has the same effect of calling directly
relax.plot.

Value

tab an invisible object containing the tabs

Author(s)

Stefano Iacus, Gary King, and Giusseppe Porro

References

Stefano Iacus, Gary King, Giusseppe Porro, “Matching for Casual Inference Without
Balance Checking,” http://gking.harvard.edu/files/abs/cem-abs.shtml

35

See Also

cem

Examples

data(LL)

mybr = list(re74=hist(LL$re74,plot=FALSE)$breaks,
re75 = hist(LL$re75,plot=FALSE)$breaks,
age = hist(LL$age,plot=FALSE)$breaks,
education = hist(LL$education,plot=FALSE)$breaks)

mat <- cem(treatment="treated",data=LL, drop="re78")
mat$tab

tab <- relax.cem(mat, LL, L1.breaks=mybr, depth=1, plot=FALSE)

relax.plot(tab, group="1")
plot(tab, group="1")
relax.plot(tab, group="1", unique=TRUE)
relax.plot(tab, group="1", perc=0.6)
relax.plot(tab, group="1", perc=0.6,unique=TRUE)

tab1 <- relax.cem(mat, LL, L1.breaks=mybr, depth=1, minimal=list(re74=6, age=3, education=3, re75=5))
tab2 <- relax.cem(mat, LL, L1.breaks=mybr, depth=1, minimal=list(re74=6, age=3, education=3, re75=5), shifts=0.01)
tab3 <- relax.cem(mat, LL, L1.breaks=mybr, depth=1, minimal=list(age=3, education=3), fixed=c("re74","re75"))

uncomment to run. Might be slow
tab4 <- relax.cem(mat, LL, L1.breaks=mybr, depth=2, minimal=list(age=4, education=3,re75=6), plot=FALSE, fixed="re74")
relax.plot(tab4)
relax.plot(tab4, unique=TRUE)
relax.plot(tab4, perc=0.7)

36

7.10 shift.cem: Diagnostic tool for CEM

Description

Diagnostic tools for CEM. Applies leftward and rightward shifts of the cutpoints.

Usage

shift.cem(obj, data, shifts=NULL, verbose=0, plot=TRUE)

Arguments

obj and object of class cem

data the original data

shifts a vector of proportions of shifts

verbose controls the level of verbosity

plot whether to plot a graphic representation of the search

Details

For each variable, shift all the cutpoints left and right by shifts times the smallest
epsilon of the coarsening. Shifting to the right produces a new cell on the left; shift to
the left, adds a new cell to the coarsening on the right. Only positive proportions should
be used; the algorithm will produce shifting on the left or on the right. The best shifting
of the original cem match is produced as output, where best is defined in terms of the
maximal total number of matched units mT+mC (see below).

By default, the function returns minimal information about the execution of the algo-
rithm. By setting a value greater than 0 in option verbose more feedback on the process
is returned.

Option plot = TRUE plots the number of treated units matched mT, the number of control
units matched mC, and the sum mT+mC, as a function of the shifts.

Value

tab an invisible object containing a new cem object

Author(s)

Stefano Iacus, Gary King, and Giusseppe Porro

References

Stefano Iacus, Gary King, Giusseppe Porro, “Matching for Casual Inference Without
Balance Checking,” http://gking.harvard.edu/files/abs/cem-abs.shtml

37

See Also

cem

Examples

data(LL)

m74 <- max(LL$re74, na.rm=TRUE)
s74 <- seq(0,m74,by=sd(LL$re74))
l74 <- length(s74)
if(max(s74) < m74) s74 <- c(s74, m74)

m75 <- max(LL$re75, na.rm=TRUE)
s75 <- seq(0,m75,by=sd(LL$re75))
l75 <- length(s75)
if(max(s75) < m75) s75 <- c(s75, m75)

mybr = list(re74=s74,
re75 = s75,
age = hist(LL$age,plot=FALSE)$breaks,
education = hist(LL$education,plot=FALSE)$breaks)

mat <- cem(treatment="treated",data=LL, drop="re78",cut=mybr)
mat$tab

shift.cem(mat, data=LL, shifts=seq(0.01, 0.5, length=10), verb=1)

38

References

Freedman, D. and P. Diaconis. 1981. “On the histogram as a density estimator: L2 theory.”
Probability Theory and Related Fields 57:453–476.

Ho, Daniel E., Kosuke Imai, Gary King and Elizabeth A. Stuart. Forthcoming. “MatchIt:
Nonparametric Preprocessing for Parametric Causal Inference.”Journal of Statistical Soft-
ware . http://gking.harvard.edu/matchit.

Honaker, James, Gary King and Matthew Blackwell. 2006. “Amelia II: A Program for Missing
Data.”. http://gking.harvard.edu/amelia.

Iacus, Stefano M., Gary King and Giuseppe Porro. 2008. “Matching for Causal Inference
Without Balance Checking.”. http://gking.harvard.edu/files/abs/cem-abs.shtml.

Lalonde, Robert. 1986. “Evaluating the Econometric Evaluations of Training Programs.”
American Economic Review 76:604–620.

Scott, D.W. 1992. Multivariate density estimation. Theory, practice and visualization. New
York: John Wiley & Sons, Inc.

Shimazaki, H. and S. Shinomoto. 2007. “A Method for Selecting the Bin Size of a Time
Histogram.” Neural Computation 19(6):1503–1527.

39

